Skip to main content
Log in

Removal of Cu and Zn from Aqueous Solutions by Selected Tree Leaves with Phytoremediation Potential

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, some different selected plant leaves grown in Jordan such as Citrus limon (Rutaceae), Ceratonia siliqua L., Olea europaea (Oleaceae), Washingtonia filifera, and Myoporum (Myoporaceae) were examined for removal of copper (Cu) and zinc (Zn) ions from aqueous solutions. Cu and Zn were analyzed by atomic absorption spectrometry. A pH S-2 acidometer was used for determining the acidity of leaves solution system. Our findings showed the plants leaves were relatively efficient for removal of Cu and Zn compared to activated carbon. Removal of a 5 mg/L aqueous metal solution of Cu and Zn was treated with 2.5 g oven-dried plant in a 50 mL deionized water. The removal of Cu and Zn was expressed in terms of a time function ranged between 0 and 192 hours of contact time. The uptake of Cu and Zn by plant leaves was arranged in the following order:

  1. (i)

    Cu: Activated carbon > Washingtonia filifera > Ceratonia siliqua L. > Olea europaea (Oleaceae) > Myoporum (Myoporaceae) > Citrus limon (Rutaceae)

  2. (ii)

    Zn: Activated carbon > Olea europaea (Oleaceae) > Citrus limon (Rutaceae) > Ceratonia siliqua L. > Washingtonia filifera > Myoporum (Myoporaceae)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadpour, P., Ahmadpour, F., Mahmud, T., Abdu, A., Soleimani, M., & Hosseini, T. F. (2012). Phytoremediation of heavy metals: a green technology. African Journal of Biotechnology, 11, 14036–14043.

    CAS  Google Scholar 

  • Alfarra, S. R., Ali, E. N., & Yusoff, M. M. (2014). Removal of heavy metals bynatural adsorbent: review. International Journal of Bioscience, 4(7), 130–139.

    CAS  Google Scholar 

  • Al-Fartusie, F. S., & Mohssan, S. N. (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science, 5(3), 127–136.

    CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals: concepts and applications. Chemosphere, 91(7), 869–881.

    CAS  Google Scholar 

  • Bales, C. W., Ritchie, C. S., & Wellman, N. S. (2009). Handbook of Clinical Nutrition and Aging, New York: Springer, 156-181.

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.

    CAS  Google Scholar 

  • Belay, K., & Abisa, Z. (2015). Developing a method for trace metal analysis in spices using spectroscopic techniques: a review. International Journal of Chemistry and Natural Science, 3, 195–199.

    Google Scholar 

  • Bhattacharya, T., Banerjee, D. K., & Gopal, B. (2006). Heavy metal uptake by Scirpus littoralis Schrad from fly ash dosed and metal spiked soils. Environmental Monitoring and Assessment, 121(1-3), 363–380.

    CAS  Google Scholar 

  • Divrikli, U., Horzum, N., Soylak, M., & Elci, L. (2006). Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. International Journal of Food and Technology, 41(6), 712–716.

    CAS  Google Scholar 

  • Duran, A., Tuzen, M., & Soylak, M. (2007). Trace element levels in some dried fruit samples from Turkey. International Journal of Food Science and Nutrition, 59, 581–589.

    Google Scholar 

  • Dutta, T. K., & Mukta, V. (2012). Trace elements. Medicine Update, 22, 353–357.

    Google Scholar 

  • Ferniza-Garcia, F., A. Amaya-Chavez, G. Roa-Morales, & C.E. Barrera-Diaz (2017). Removal of Pb, Cu, Cd, and Zn present in aqueous solution using coupled electrocoagulation-phytoremediation treatment. International Journal of Electrochemistry, 7681451, 11 pages.

  • Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26(4), 235–244.

    CAS  Google Scholar 

  • Gharaibeh, S. H., Abu-El-Sha’r, W. Y., & Al-Kofahi, M. M. (1998). Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products. Water Research, 32(2), 498–502.

    CAS  Google Scholar 

  • Gharaibeh, S. H., Abu-El-Sha’r, W. Y., & Al-Kofahi, M. M. (1999). Removal of selected heavy metals from aqueous solutions using processed solid by product from the Jordanian oil shale refining. Environmental Geology, 39(2), 113–116.

    CAS  Google Scholar 

  • Ghazala, Y., Fizza, I., Muniba, I., & Vania, M. (2018). Monitoring and risk assessment due to presence of heavy metals and pesticides in tea samples. Food of Science and Technology, 38(4), 625–628.

    Google Scholar 

  • Hänsch, R., & Mendel, R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266.

    Google Scholar 

  • Ijaola, T. O., Babajide, S. O., Taiwo, A. A., Osunkiyesi, A. A., Akindele, O. I., & Sojobi, O. A. (2015). Phytoremediation of heavy metals (Cu, Zn, and Pb) contaminated water using water Hacinth (Eichhornia crassipes). IOSR Journal of Applied Chemistry, 8(5), 65–72.

    CAS  Google Scholar 

  • Izah, S. C., Chakrabatry, N., & Srivastav, A. L. (2016). A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures. Exposure Health, 8, 285–304.

    CAS  Google Scholar 

  • Jalbani, N., Ahmed, F., Kazi, T. G., Rashid, U., Munshi, A. B., & Kandhro, A. (2010). Determination of essential elements (Cu, Fe and Zn) in juices of commercially available in Pakistan. Food and chemical toxicology, 48(10), 2737–2740.

    CAS  Google Scholar 

  • Kodama, H., & Fujisawa, C. (2009). Copper metabolism and inherited copper transport disorders: molecular mechanisms, screening, and treatment. Metallomics, 1(1), 42–52.

    CAS  Google Scholar 

  • Laghlimi, M., Baghdad, B., El Hadi, H., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: A Review. Open Journal of Ecology, 5, 375–388.

    Google Scholar 

  • Linder, M. C., Wooten, L., Cerveza, P., Cotton, S., Shulze, R., & Lomeli, N. (1998). Copper transport. American Journal of Clinical Nutrition, 67(5), 965S–971S.

    CAS  Google Scholar 

  • Malakootian, M., Tahergorabi, M., Daneshpajooh, M., & Amirtaheri, K. (2011). Determination of Pb, Cd, Ni, and Zn concentrations in canned fish in Southern Iran. Sacha Journal of Environmental Studies, 1(1), 94–100.

    Google Scholar 

  • Maretm, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20, 3–18.

    Google Scholar 

  • Massadeh, A. M., & Al-Massaedh, A.-A. T. (2018). Determination of heavy metals in canned fruits and vegetables sold in Jordan market. Environment Science and Pollution Research, 25, 1914–1920.

    CAS  Google Scholar 

  • Massadeh, A. M., & Massadeh, H. A. (2019). Uptake of Cd and Pb from aqueous solutions using selected tree leaves through phytoremediation. Water, Air & Soil Pollution Journal, 230, 216.

    Google Scholar 

  • Massadeh, A. M., Baker, H. M., Obeidat, M. M., Shakatreh, S. K., Obeidat, B. A., & Abu-Nameh, E. S. (2011). Analysis of lead and cadmium in selected leafy and non-leafy edible vegetables using atomic absorption spectrometry. Soil and Sediment Contamination: An international Journal, 20, 306–314.

    CAS  Google Scholar 

  • Massadeh, A. M., El-Rjoob, A.-W. O., & Al-Omari, M. N. (2016). Assessment of heavy metals in different parts of Ruta chalepensis L. (Rutaceae) medicinal plant and soil samples in selected zones in Jordan. Soil and Sediment Contamination: International Journal, 25(6), 587–596.

    CAS  Google Scholar 

  • Moosavi, S. G., & Seghatoleslami, M. J. (2013). Phytoremediation: a review. Advance in Agriculture and Biology, 1, 5–11.

    Google Scholar 

  • Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury-contaminated water: volatilization and plant-accumulation aspects. Environmental and Experimental Botany, 62(1), 78–85.

    CAS  Google Scholar 

  • Murugavelh, S., & Vinothumar, D. (2010). Removal of heavy metals from wastewater using different biosorbents. Current World Environment, 5(2), 299–304.

    CAS  Google Scholar 

  • Nolan, K. (2003). Copper toxicity syndrome. Journal of Orthomolecular Psychiatry, 12, 270–282.

    Google Scholar 

  • Nouri, E. N., Khorasani, E. B., Lorestani, E. M., Karami, E. A. H., & Hassani, E. N. Y. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environment Earth Sciences, 59, 315–323.

    CAS  Google Scholar 

  • Obaidat, M. M., Massadeh, M. M., Al-Athamneh, A. M., & Jaradat, Q. M. (2015). Heavy metals in fish from the Red Sea, Arabian Sea, and Indian Ocean: effect of origin, fish species and size and correlation among the metals. Environmental Monitoring and Assessment, 187, 218–225.

    Google Scholar 

  • Ochonogor, R. O., Atagana Ochonogor, R. O., & Atagana, H. I. (2014). Phytoremediation of heavy metal contaminated soil by Psoralea pinnata. International Journal of Environmental Science and Development, 5, 440–443.

    CAS  Google Scholar 

  • Ogunlana, O. O., Ogunlana, O. E., Akinsanya, A. E., & Ologbenlao, O. O. (2015). Heavy metal analysis of selected soft drinks in Nigeria. Journal of Global Biosciences, 4, 1335–1338.

    Google Scholar 

  • Olivares, M., Uauy, R., Icaza, G., González, M. (1999). Models to evaluate health risks derived from copper exposure/intake in humans. In: Leone A., Mercer J.F.B. (eds). Copper Transport and its Disorders. Advances in Experimental Medicine and Biology 448, 17–28. Springer, Boston, MA.

  • Olmedo, P., Hernández, A. F., Pla, A., Femia, P., Navas-Acien, A., & Gil, F. (2013). Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Food and Chemical Toxicology, 62, 299–307.

  • Osredkar, J., & Sustar, N. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance. Journal of Clinical Toxicology, S3, 1–18.

    Google Scholar 

  • Plum, L., Rink, L., & Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environ Research Public Health, 7(4), 1342–1365.

    CAS  Google Scholar 

  • Prasad, S. (2004). Zinc deficiency: its characterization and treatment. Metal İons in Biological Systems, 41, 103–137.

    CAS  Google Scholar 

  • Prasad, M. N. V., & Freitas, H. (2000). Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution, 110, 277–283.

    CAS  Google Scholar 

  • Radwan, M. A., & Salama, A. K. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology, 44, 1273–1278.

    CAS  Google Scholar 

  • Ricous, P., Lecuyer, I., & Le Cloirec, P. (1998). Influence of pH on removal of heavy metallic cations by fly ash in aqueous solution. Environmental Technology, 19(10), 1005–1016.

    Google Scholar 

  • Roger, M. (2011). The minerals you need, USA: Safe Goods Publishing, p 21.

  • Sardar, K., Shafaqat, A., Hameed, S., Afzal, S., Fatima, S., Shakoor, M. B., Bharwana, S. A., & Tauqeer, H. M. (2013). Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2(4), 172–179.

    Google Scholar 

  • Shafaghat, A., Salimi, F., Valiei, M., Salehzadeh, J., & Shafaghat, M. (2012). Removal of heavy metals (Pb2+, Cu2+ and Cr3+) from aqueous solutions using five plants materials. African Journal of Biotechnology, 11(4), 852–855.

    CAS  Google Scholar 

  • Sharma, R. K., & Agarwal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2), 301–313.

    CAS  Google Scholar 

  • Sinha, S., Mishra, R. K., Sinam, G., Mallick, S., & Gupta, A. K. (2013). Comparative evaluation of metal phytoremediation potential of trees, grasses and flowering plants from tannery wastewater contaminated soil in relation with physicochemical properties. Soil and Sediment Contamination: An International Journal, 22, 958–983.

    Google Scholar 

  • Soetan, K. O., Olaiya, C. O., & Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science, 4(5), 200–222.

    CAS  Google Scholar 

  • Soylak, M., Saraçoglu, S., Tüzen, M., & Mendil, D. (2005). Determination of trace metals in mushroom samples from Kayseri, Turkey. Journal of Food Chemistry, 92, 649–652.

    CAS  Google Scholar 

  • Taiwo, A. M., Oyeleye, O. F., Majekodunmi, B. J., Anuobi, V. E., Afolabi, A., Idowu, O. E., Ojekunle, Z. O., & Taiwo, O. T. (2019). Evaluation of (Zn, Cr, Cd, Ni, Pb) in staple foods from Lagos and Ogun States, Southwestern Nigeria. Environmental Monitoring and Assessment, 191(3), 167.

    CAS  Google Scholar 

  • Tangahu, B.V., Sheikh Abdullah, S. R., Basri, H., M. Idris, Anuar, N. & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg): Uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1-31.

  • Tsugutoshi, A. O. K. I. (2004). Copper deficiency and the clinical practice. Japan Medical Association Journal, 47, 365–370.

    Google Scholar 

  • Tuzen, M., & Soylak, M. (2007). Evaluation of trace element contents in canned foods marketed from Turkey. Journal of Food Chemistry, 102, 1089–1095.

    CAS  Google Scholar 

  • Uauy, R., Olivares, M., & Gonzalez, M. (1988). Essentiality of copper in humans. Journal of Clinical Nutrition, 67(5), 952–959.

    Google Scholar 

  • Wan Ngah, W. S., & Hanafiah, M. A. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technology, 99(10), 3935–3948.

    CAS  Google Scholar 

  • Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of selected vitamins and trace elements to ımmune function. Annals of Nutrition and Metabolism, 51(4), 301–323.

    CAS  Google Scholar 

  • Xu, M., & Lu, N. (2012). Research on removing heavy metals from mine tailings. Disaster Advances, 5, 116–120.

    Google Scholar 

  • Zadeh, J. S. (2013). Removal of heavy metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from aqueous solutions by using xanthium pensylvanicum. Leonardo Journal of Sciences, 23, 97–104.

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to acknowledge the Deanship of Scientific Research at Jordan University of Science and Technology for providing facilities to perform this research.

Funding

This study was funded by the Deanship of Scientific Research at Jordan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan M. Massadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massadeh, A.M., Massadeh, S.A.A. Removal of Cu and Zn from Aqueous Solutions by Selected Tree Leaves with Phytoremediation Potential. Water Air Soil Pollut 230, 264 (2019). https://doi.org/10.1007/s11270-019-4323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4323-6

Keywords

Navigation