Skip to main content
Log in

Phytoplankton Cultures for Tannin Biodegradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tannins are special plant metabolites used in leather processing that act as pollutants. These substances are toxic to aquatic biota and can cause cell rupture. These harmful effects make the treatment of tannery wastewater difficult. Phytoplankton species are community components that are rarely considered in the biodegradation of organic compounds. However, in association with bacteria, these organisms can improve the biodegradation of pollutants by different mechanisms. The aim of the present study was to evaluate the potential of non-axenic cultures of Chlorella vulgaris containing Lactobacillus casei and Synechococcus sp. containing Rhizobium rosettiformans and Sphingomonas koreensis to biodegrade tannic acid (TA). Cultures in BG-11 medium containing TA (250 mg L−1) were incubated under a photoperiod or in the dark and monitored for 96 h. The cultures with added TA grew more than the control cultures under both the photoperiod and dark conditions. A reduction in the TA concentration and the TA metabolite gallic acid was observed under both conditions. Ellagic acid was identified and demonstrated resistance to biodegradation under the evaluated conditions, and neither of the other metabolites was detected. BG-11 culture medium is poor in organic material; therefore, microalgae and cyanobacteria contribute to bacterial metabolism. Under experimental conditions, phytoplankton species seem to contribute to the biodegradation of tannin residues, and in natural environments, they may aid in the bioremediation of sites contaminated by these pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrusci, C., Palomar, J., Pablos, J. L., Rodriguez, F., & Catalina, F. (2011). Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chemistry, 13, 709–717.

    Article  CAS  Google Scholar 

  • Aguilar, C. N., & Gutiérrez-Sánches, G. (2001). Review: Sources, properties, applications and potential uses of tannin acyl hydrolases. Food Science and Technology International, 7(5), 373–382.

    Article  CAS  Google Scholar 

  • Allen, M. M., & Stanier, R. Y. (1968). Selective isolation of blue-green algae from water and soil. Journal of General Microbiology, 51, 203–209.

    Article  CAS  Google Scholar 

  • Bergman, B., Zheng, W.-W., Klint, J., & Ran, L. (2008). On the origin of plants and relations to contemporary cyanobacterial-plant symbioses. Plant Biotechnology, 25, 213–220.

    Article  Google Scholar 

  • Casamatta, D. A., & Wickstrom, C. E. (2000). Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kützing. Microbial Ecology, 40(1), 64–73.

    Article  CAS  Google Scholar 

  • Christoff, A. P., Sereia, A. F. R., Boberg, D. R, Moraes, R. L., Oliveira, L. F. V. (2017). Bacterial identification through accurate library preparation and high-throughput sequencing. White paper: Bacterial NGS sequencing. https://neoprospecta.s3.amazonaws.com/docs/Neoprospecta+-+White+Paper+-+Bacterial+NGS+sequencing+2017.pdf

  • Divya, M., Aanand, S., Srinivasan, A., & Ahilan, B. (2015). Bioremediation – An eco-friendly tool for effluent treatment: A review. International Journal of Applied Research, 1(12), 530–537.

    Google Scholar 

  • Dong-Hyeon, S., Kim, D., Seong, C., Song, H., & Ka, J. (2012). Genetic and phenotypic diversity of Carbofuran-degrading Bacteria isolated from agricultural soils. Journal of Microbiology and Biotechnology, 22(4), 448–456.

    Article  Google Scholar 

  • Dziallas, C., & Grossart, H. P. (2011). Temperature and biotic factors influence bacterial communities associated with Microcystis sp.(cyanobacteria). Environmental Microbiology, 13(6), 1632–1641.

    Article  Google Scholar 

  • El-Bestawy, E. A., El-Salam, A. Z. A., & Mansy, A. E. H. (2007). Potencial use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. International Biodeterioration and Biodegradation, 59(3), 180–192.

    Article  CAS  Google Scholar 

  • Ferrera, I., & Sánchez, O. (2016). Insights into microbial diversity in wastewater treatment systems: How far have we come? Biotechnology Advances, 34(5), 790–802.

    Article  CAS  Google Scholar 

  • Franco, M. W., Ferreira, F. A. G., Vasconcelos, F. I., Batista, B. L., Pujoni, D. G. F., Magalhaes, S. M. S., Barbosa, F., Jr., & Barbosa, F. A. R. (2015). Arsenic biotransformation by cyanobacteria from mining areas: Evidences from culture experiments. Environmental Science and Pollution Research International, 22, 18607–18615.

    Article  CAS  Google Scholar 

  • Fuentes, J. F., Garbayo, I., Cuaresma, M., Montero, Z., González-del-Valle, M., & Vílchez, C. (2016). Impact of microalgae-Bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14, 100. https://doi.org/10.3390/md14050100.

    Article  CAS  Google Scholar 

  • Gauri, S. S., Mandal, S. M., Atta, S., Dey, S., & Pati, B. R. (2013). Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81. Journal of Applied Microbiology, 114, 84–95.

    Article  CAS  Google Scholar 

  • Ghasemi, Y., Rasoul-Amini, S., & Fotooh-Abadi, E. (2011). The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. Journal of Phycology, 47(5), 969–980.

    Article  CAS  Google Scholar 

  • Gonçalves, A. L., Pires, J., M, C., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415.

    Article  Google Scholar 

  • Grossart, H. P., Kiørboe, T., Tang, K. W., Allgaier, M., Yam, E. M., & Ploug, H. (2006). Interactions between marine snow and heterotrophic bacteria: Aggregate formation and microbial dynamics. Aquatic Microbial Ecology, 42, 19–26.

    Article  Google Scholar 

  • Guo, P., Liu, Y., & Liu, C. (2015). Effects of chitosan, gallic acid, and algicide on the physiological and biochemical properties of Microcystis flos-aquae. Environmental Science and Pollution Research International, 22(17), 13514–13521.

    Article  CAS  Google Scholar 

  • He, Q., Yao, K., Sun, D., & Shi, B. (2007). Biodegradability of tannin-containing wastewater from leather industry. Biodegradation, 18(4), 465–472.

    Article  CAS  Google Scholar 

  • Huang, X., Shi, J., Cui, C., Yin, H., Zhang, R., Ma, X., & Zhang, X. (2016). Biodegradation of phenanthrene by rhizobium petrolearium SL-1. Journal of Applied Microbiology, 121(6), 1616–1626. https://doi.org/10.1111/jam.13292

    Article  CAS  Google Scholar 

  • Krezanoski, J. Z. (1966). Tannic acid: Chemistry, analysis, and toxicology. An episode in the pharmaceutics of radiology. Radiology., 87(4), 655–657.

    Article  CAS  Google Scholar 

  • Kumar, R. A., Gunasekaran, P., & Lakshmanan, M. (1999). Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. Journal of Basic Microbiology, 39(3), 161–168.

    Article  CAS  Google Scholar 

  • Kuritz, T., & Wolk, C. P. (1995). Use of filamentous cyanobacteria for biodegradation of organic pollutants. Applied and Environmental Microbiology, 61(1), 234–238.

    CAS  Google Scholar 

  • Laue, P., Bährs, H., Chakrabarti, S., & Steinberg, C. E. (2014). Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: Contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere, 104, 212–220.

    Article  CAS  Google Scholar 

  • Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Microbiology, 44, 215–260.

    Article  CAS  Google Scholar 

  • Lu, B. L., Qi, L., & Li, M. X. (2013). Effects of temperature on the growth and product accumulationof Chlorella sp. Advanced Materials Research, 712–715, 428–432.

    Article  Google Scholar 

  • Ma, J., Lu, N., Qin, W., Xu, R., Wang, Y., & Chen, X. (2006). Differential responses of eight cyanobacterial and green algal species to carbamate insecticides. Ecotoxicology and Environmental Safety, 63(2), 268–274.

    Article  CAS  Google Scholar 

  • Mingshu, L., Kay, Y., Qiang, H., & Dongying, J. (2006). Biodegradation of gallotannins and ellagitannins. Journal of Basic Microbiology, 46(1), 68–84.

    Article  Google Scholar 

  • Muñoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40(15), 2799–2815.

    Article  Google Scholar 

  • Nogales, J., Canales, A., Jimenez-Barbero, J., Serra, B., Pingarron, J. M., Garcia, J. L., & Diaz, E. (2011). Unravelling the gallic acid degradation pathway in bacteria: The gal cluster from Pseudomonas putida. Molecular Microbiology, 79(2), 359–374.

    Article  CAS  Google Scholar 

  • Osawa, R., Kuroiso, K., Goto, S., & Shimizu, A. (2000). Isolation of tannin-degrading lactobacilli from humans and fermented foods. Applied and Environmental Microbiology, 66(7), 3093–3097.

    Article  CAS  Google Scholar 

  • Osawa, R., Fujisawa, T., & Pukall, R. (2006). Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 7, 1693–1696.

    Article  CAS  Google Scholar 

  • Palanisami, S., Kannan, K., & Lakshmanan, U. (2012). Tannase activity from the marine cyanobacterium Phormidium valderianum BDU140441. Journal of Applied Phycology, 24(5), 1093–1098.

    Article  CAS  Google Scholar 

  • Pesce, S. F., & Wunderlin, D. A. (2004). Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. International Biodeterioration & Biodegradation, 54, 255–260.

    Article  CAS  Google Scholar 

  • Pinto, G., Pollio, A., Previtera, L., & Temussi, F. (2002). Biodegradation of phenols by microalgae. Biotechnology Letters, 24(24), 2047–2051.

    Article  CAS  Google Scholar 

  • R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ramanan, R., Kim, B.-H., Cho, D.-Y., Oh, H.-M., & Kim, H. S. (2016). Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 34(1), 14–29.

    Article  CAS  Google Scholar 

  • Rodriguez, H., De las Rivas, B., Gómez-Cordovés, C., & Muñoz, R. (2008). Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International Journal of Food Microbiology, 121(1), 92–98.

    Article  CAS  Google Scholar 

  • Romero-Dondiz, E. M., Almazán, J. E., Rajal, V. B., & Castro-Vidaurre, E. F. (2015). Removal of vegetable tannins to recover water in the leather industry by ultrafiltration polymeric membranes. Chemical Engineering and Research Design, 93, 727–735.

    Article  CAS  Google Scholar 

  • Sasaki, E., Shimada, T., Osawa, R., Nishitani, Y., Spring, S., & Lang, E. (2005). Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Systematic and Applied Microbiology, 28(4), 358–365.

    Article  Google Scholar 

  • Saxena, G., Chandra, R., & Bharagava, R. N. (2017). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Reviews of Environmental Contamination and Toxicology, 240, 31–69.

    CAS  Google Scholar 

  • Seesuriyachana, P., Takenakab, S., Kuntiyaa, A., Klayraungc, S., Murakamib, S., & Aokib, K. (2007). Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Research, 41, 985–992.

    Article  Google Scholar 

  • Sena, L., Rojas, D., Montiel, E., González, H., Moret, J., & Naranjo, L. A. (2011). Strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria. World Journal of Microbiology and Biotechnology, 27(5), 1045–1053.

    Article  CAS  Google Scholar 

  • Sepúlveda, M., Oliva, D., Urra, A., Pérez-Álvarez, M. J., Moraga, R., Schrader, D., Inostroza, P., Melo, A., Díaz, H., & Sielfeld, W. (2011). Distribution and abundance of the south American sea lion Otaria flavescens (Carnivora: Otariidae) along the central coast off Chile. Revista Chilena de Historia Natural, 84, 97–106.

    Article  Google Scholar 

  • Sharma, S., Bhat, T. K., & Dawra, R. K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 279(1), 85–89.

    Article  CAS  Google Scholar 

  • Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72.

    Article  CAS  Google Scholar 

  • Surkatti, R., & Al-Zuhair, S. (2018). Microalgae cultivation for phenolic compounds removal. Environmental Science and Pollution Research, 25(34), 33936–33956.

    Article  CAS  Google Scholar 

  • Tang, W. J., Zhang, L. S., Fang, Y., Zhou, Y., & Ye, B. C. (2016). Biodegradation of phthalate esters by newly isolated rhizobium sp. LMB-1 and its biochemical pathway of di-n-butyl phthalate. Journal of Applied Microbiology, 121(1), 177–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Gecernir Colen for his suggestions and discussion during this study and the Chemistry Department of the Institute of Exact Sciences of the Federal University of Minas Gerais for conducting the chemical analysis.

Funding

This study was funded by the Minas Gerais State Agency for Research and Development (project number CBB-APQ-01491-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergia Maria Starling Magalhães.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.B., Pádua, R.M., Barbosa, F.A.R. et al. Phytoplankton Cultures for Tannin Biodegradation. Water Air Soil Pollut 230, 170 (2019). https://doi.org/10.1007/s11270-019-4199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4199-5

Keywords

Navigation