Skip to main content
Log in

Removal of Chromium, Copper, and Nickel from an Electroplating Effluent Using a Flocculent Brewer’s Yeast Strain of Saccharomyces cerevisiae

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The release of heavy metals in aquatic systems due to the discharge of industrial wastewaters is a matter of environmental concern. Heat-inactivated cells of a flocculent strain of Saccharomyces cerevisiae were used in the bioremediation, in a batch mode, of a real electroplating effluent containing Cu, Ni, and Cr. In this approach, no previous reduction of Cr(VI) to Cr(III) was required. Cr(VI) was selectively removed (98%) by yeast biomass at pH 2.3. At this pH, Cr(VI) is mainly in the form of HCrO 4 and yeast surface is surrounded by H+ ions, which enhance the Cr(VI) interaction with biomass binding sites by electrostatic forces. Subsequently, pH of the effluent was raised up to 6.0; this pH maximizes the efficiency of cations removal since at this pH the main binding groups of yeast cells are totally or partially deprotonated. The passage of effluent through a series of sequential batches, at pH 6.0, allowed, after the third batch, the removal of Cu(II), Ni (II), Cr total, and Cr(VI) in the effluent to values below the legal limit of discharge. The strategy proposed in the present work can be used in plants for the treatment of heavy metals rich industrial effluents containing simultaneously Cr(VI) and Cr(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Public Health Association (APHA), et al. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Bingol, A., Ucun, H., Bayhan, Y. K., Karagunduz, A., Cakici, A., & Keskinler, B. (2004). Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Bioresource Technology, 94, 245–249.

    Article  CAS  Google Scholar 

  • Brady, D., & Duncan, J. R. (1994). Bioaccumulation of metal-cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41, 149–154.

    Article  CAS  Google Scholar 

  • Cojocaru, C., Diaconu, M., Cretescu, I., Savic, J., & Vasic, V. (2009). Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 335, 181–188.

    Article  CAS  Google Scholar 

  • Decreto-lei 236/98 (1998). Anexo XVIII. Valores limite de emissão na descarga de águas residuais. Diário da República, série I-A, 176/98, 3717–3718.

  • Ferraz, A. I., & Teixeira, J. A. (1999). The use of flocculating brewer’s yeast for Cr(III) and Pb(II) removal from residual wastewaters. Bioprocess Engineering, 21, 431–437.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology, 84, 13–28.

    Article  CAS  Google Scholar 

  • Gomez, V., & Callao, M. P. (2006). Chromium determination and speciation since 2000. TRAC-Trends in Analytical Chemistry, 25, 1006–1015.

    Article  CAS  Google Scholar 

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.

    Article  CAS  Google Scholar 

  • Krauter, P., Martinelli, R., Williams, K., & Martins, S. (1996). Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation, 7, 277–286.

    Article  CAS  Google Scholar 

  • Machado, M. D., Santos, M. S. F., Gouveia, C., Soares, H. M. V. M., & Soares, E. V. (2008). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresource Technology, 99, 2107–2115.

    Article  CAS  Google Scholar 

  • Machado, M. D., Janssens, S., Soares, H. M. V. M., & Soares, E. V. (2009). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. Journal of Applied Microbiology, 106, 1792–1804.

    Article  CAS  Google Scholar 

  • Martell, A. E., & Smith, R. M. (2004). NIST critically selected stability constants of metal complexes database. NIST standard reference database 46 version 8.0. Gaithersburg, MD: US Department of Commerce, National Institute of Standards and Technology.

    Google Scholar 

  • Mertz, W. (1993). Chromium in human nutrition: a review. Journal of Nutrition, 123, 626–633.

    CAS  Google Scholar 

  • Özer, A., & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II), and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Journal of Hazardous Materials, 100, 219–229.

    Article  Google Scholar 

  • Parvathi, K., & Nagendran, R. (2007). Biosorption of chromium from effluent generated in chrome-electroplating unit using Saccharomyces cerevisiae. Separation Science and Technology, 42, 625–638.

    Article  CAS  Google Scholar 

  • Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: a review. Veterinarni Medicina, 52, 1–18.

    CAS  Google Scholar 

  • Prigione, V., Zerlottin, M., Refosco, D., Tigini, V., Anastasi, A., & Varese, G. C. (2009). Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresource Technology, 100, 2770–2776.

    Article  CAS  Google Scholar 

  • Schecher, W. D., & McAvoy, D. C. (2003). MINEQL+: a chemical equilibrium modeling system, version 4.5 for windows, user’s manual. Hallowell, Maine: Environmental Research Software.

    Google Scholar 

  • Soares, E. V., DeConinck, G., Duarte, F., & Soares, H. M. V. M. (2002). Use of Saccharomyces cerevisiae for Cu2+ removal from solution: the advantages of using a flocculent strain. Biotechnology Letters, 24, 663–666.

    Article  CAS  Google Scholar 

  • US-EPA. (1984). Guidance manual for electroplating and metal finishing pretreatment standards. EPA-440/1-84/091g. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24, 427–451.

    Article  CAS  Google Scholar 

  • Zhao, M., & Duncan, J. R. (1998). Column sorption of Cr(VI) from electroplating effluent using formaldehyde cross-linked Saccharomyces cerevisiae. Biotechnology Letters, 20, 603–606.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to the “Fundação para a Ciência e a Tecnologia” (FCT) from Portuguese Government for the financial support of this work with FEDER founds, by the Project POCTI/CTA/47875/2002. Manuela D. Machado is also gratefully acknowledged for a grant scholarship financed under the same project and another grant from FCT (SFRH/BD/31755/2006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena M. V. M. Soares or Eduardo V. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, M.D., Soares, H.M.V.M. & Soares, E.V. Removal of Chromium, Copper, and Nickel from an Electroplating Effluent Using a Flocculent Brewer’s Yeast Strain of Saccharomyces cerevisiae . Water Air Soil Pollut 212, 199–204 (2010). https://doi.org/10.1007/s11270-010-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0332-1

Keywords

Navigation