Skip to main content
Log in

Effects of a Copper-Resistant Fungus on Copper Adsorption and Chemical Forms in Soils

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

For bioremediation of copper-contaminated soils, it is essential to understand copper adsorption and chemical forms in soils related to microbes. In this study, a Penicillium strain, which can tolerate high copper concentrations up to 150 mmol l−1 Cu2+, was isolated from a copper mining area. The objective was to study effects of this fungus on copper adsorptions in solutions and chemical forms in soils. Results from lab experiments showed the maximum biosorptions occurred at 360 min with 6.15 and 15.08 mg g−1 biomass from the media with Cu2+ of 50 and 500 mg l−1, respectively. The copper was quickly adsorbed by the fungus within the contact time of the first 60 min. To characterize the adsorption process of copper, four types of kinetics models were used to fit the copper adsorption data vs. time. Among the kinetics models, the two-constant equation gave the best results, as indicated by the high coefficients of determination (R 2 = 0.89) and high significance (p < 0.01). The addition of the fungal strain to autoclaved soil facilitated increases in concentrations of acid-soluble copper, copper bound to oxides, and of copper bound to organic matter (p < 0.05). However, the inoculation of Penicillium sp. A1 led to a decrease of water-soluble copper in the soil. The results suggested that Penicillium sp. A1 has the potential for bioremediation of copper-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257. doi:10.1016/j.biortech.2005.12.006.

    Article  CAS  Google Scholar 

  • Bhainsa, K. C., & D’Souza, S. F. (2008). Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresource Technology, 99(9), 3829–3835. doi:10.1016/j.biortech.2007.07.032.

    Article  CAS  Google Scholar 

  • Chen, Y. X., Wang, Y. P., Lin, Q., & Luo, Y. M. (2005). Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environment International, 31, 861–866. doi:10.1016/j.envint.2005.05.044.

    Article  CAS  Google Scholar 

  • Fangueiro, D., Bermond, A., Santos, E., Carapuca, H., & Duarte, A. (2005). Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information. Talanta, 66, 844–857. doi:10.1016/j.talanta.2004.12.036.

    Article  CAS  Google Scholar 

  • Garcia, S., Prado, M., Degano, R., & Dominguez, A. (2002). A copper-responsive transcription factor, CRF1, mediates copper and cadmium resistance in Yarrowia lipolytica. The Journal of Biological Chemistry, 277, 37359–37368. doi:10.1074/jbc.M201091200.

    Article  CAS  Google Scholar 

  • Guillén, Y., & Machuca, A. (2008). The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus. World Journal of Microbiology & Biotechnology, 24, 31–37. doi:10.1007/s11274-007-9434-3.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1996). Kinetic studies of competitive heavy metal adsorpfion by sphagnum moss peat. Environmental Technology, 17, 71–77. doi:10.1080/09593331708616362.

    Article  CAS  Google Scholar 

  • Jain, R. K. (1990). Copper-resitant microorganisms and their role in the environment. World Journal of Microbiology & Biotechnology, 6, 356–365. doi:10.1007/BF01202115.

    Article  CAS  Google Scholar 

  • Karnachuk, O. V., Kurochkina, S. Y., Nicomrat, D., Frank, Y. A., Ivasenko, D. A., Phyllipenko, E. A., et al. (2003). Copper resistance in Desulfovibrio strain R2. Antonie Van Leeuwenhoek, 83, 99–106. doi:10.1023/A:1022947302637.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1989). About the theory of so-called adsorpfion of soluble substances. Kungliga Svemka Vetemkapsakademies Handlingar, 24, 1–3.

    Google Scholar 

  • Luo, C.-L., Shen, Z.-G., Baker, A. J. M., & Li, X.-D. (2006). A novel strategy using biodegradable EDDS for the chemically enhanced phytoextraction of soils contaminated with heavy metals. Plant and Soil, 285, 67–80. doi:10.1007/s11104-006-0059-3.

    Article  CAS  Google Scholar 

  • Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278. doi:10.1016/j.envint.2003.08.001.

    Article  CAS  Google Scholar 

  • Moazed, H. (2008). Ammonium ion removal from wastewater by a natural resin. Journal of Environmental Science and Technology, 1, 11–18.

    Article  CAS  Google Scholar 

  • Ozdemir, G., Ceyhan, N., Ozturk, T., Akirmak, F., & Cosar, T. (2004). Biosorption of chromium (VI), cadmium (II) and copper (II) by Pantoea sp. TEM18. Chemical Engineering Letters, 102, 249–253.

    CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Environmental Monitoring and Assessment, 1, 57–61.

    CAS  Google Scholar 

  • Saxena, D., Joshi, N., & Srivastava, S. (2002). Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4. Current Microbiology, 45, 410–414. doi:10.1007/s00284-002-3787-5.

    Article  CAS  Google Scholar 

  • Sikora, F. J., Copeland, J. P., Mullins, G. L., & Bartos, J. M. (1991). Phosphorus dissolution kinetics and bioavailability of water-insoluble fractions from monoammonium phosphate fertilizers. Soil Science Society of America Journal, 55, 362–368.

    Article  CAS  Google Scholar 

  • Solioz, M., & Stoyanov, J. V. (2003). Copper homeostasis in Enterococcus hirae. FEMS Microbiology Reviews, 27, 183–195. doi:10.1016/S0168-6445(03)00053-6.

    Article  CAS  Google Scholar 

  • Tsivkovskii, R., Efremov, R. G., & Lutsenko, S. (2003). The role of the invariant His-1069 in folding and function of the Wilson’s disease protein, the human copper-transporting ATPase ATP7B. The Journal of Biological Chemistry, 278, 13302–13308. doi:10.1074/jbc.M300034200.

    Article  CAS  Google Scholar 

  • Wang, X., Yost, R. S., & Linquist, B. A. (2001). Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Science Society of America Journal, 65, 139–146.

    CAS  Google Scholar 

  • Wei, J. C. (1979). Identification manual of soil fungi. Shanghai, China: Shanghai Science & Technology Press, (in Chinese).

    Google Scholar 

  • Wei, M. K., Tang, H. Y., Liang, L., Huang, S., & Li, Y. Z. (2006). Characteristics of high resistance to heavy metal salts and uptake of Cu2+ and Zn2+ ions of Penicillium janthinellum. Mycosystema, 25(4), 616–623, in Chinese.

    CAS  Google Scholar 

  • Weissman, Z., Berdicevsky, I., Cavari, B. Z., & Kornitzer, D. (2000). The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proceedings of the National Academy of Sciences of the United States of America, 97, 3520–3525. doi:10.1073/pnas.97.7.3520.

    Article  CAS  Google Scholar 

  • Whiting, S. N., De Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science & Technology, 35(15), 3144–3150. doi:10.1021/es001938v.

    Article  CAS  Google Scholar 

  • Yahaya, Y. A., Mat Don, M., & Bhatia, S. (2008). Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies. Journal of Hazard Materials, 161(1), 189–195. doi:10.1016/j. jhazmat. 2008.03.104.

    Article  CAS  Google Scholar 

  • Yu, J., & Klarup, D. (1994). Extraction kinetics of copper, Zinc, iron and manganese from contaminated sediment using disodium ethylenediaminetetraacetiate. Water, Air, and Soil Pollution, 75, 205–225. doi:10.1007/BF00482938.

    Article  CAS  Google Scholar 

  • Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98, 2557–2561. doi:10.1016/j.biortech.2006.09.051.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Natural Science Foundation of Guangdong Province (no. 06202438), and from the Chinese National Natural Science Foundation (nos. 30600011, 50779080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renduo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, A., Cao, L., Zhang, R. et al. Effects of a Copper-Resistant Fungus on Copper Adsorption and Chemical Forms in Soils. Water Air Soil Pollut 201, 99–107 (2009). https://doi.org/10.1007/s11270-008-9930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9930-6

Keywords

Navigation