Skip to main content
Log in

New Analytical Solutions for Unsteady Flow in a Leaky Aquifer between Two Parallel Streams

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Analytical simulation of groundwater flow is a necessary and useful technique to predict the various behavior patterns of a groundwater system. The main aim of the present study is to derive new analytical solutions to compute the unsteady flows inside an aquifer between two parallel streams of constant and varying heads. The problems are solved by means of Laplace transform method and the solution results are verified with the results of MODFLOW. It is observed that the obtained results agreed very well with the results of MODFLOW. The solutions are carried out for two cases of ascending and descending water levels and the obtained results are compared with each other. In addition, the sensitivity of hydraulic heads to aquifer parameters and how locations of water divide change by change in aquifer parameters are investigated. In sensitivity analysis of hydraulic heads to changes in recharge rate with different values of hydraulic conductivity, thickness, and length of the aquifer, it is shown that among these parameters the length of the aquifer is the most important parameter affecting the hydraulic heads. Furthermore, the sensitivity of flow rates to recharge rates and water level change rates are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bansal RK, Das SK (2009) Analytical solution for transient hydraulic head, flow rate and volumetric exchange in an aquifer under recharge condition. J Hydrol Hydromech 57(2):113–120. doi:10.2478/v10098-009-0010-4

    Article  Google Scholar 

  • Bansal RK, Das SK (2010) Water table fluctuations in a sloping aquifer: analytical expressions for water exchange between stream and groundwater with surface infiltration. J Porous Media 13(4):365–374. doi:10.1615/JPorMedia.v13.i4.70

    Article  Google Scholar 

  • Bansal RK, Das SK (2011) Response of an unconfined sloping aquifer to constant recharge and seepage from the stream of varying water level. Water Resour Manag 25(3):893–911. doi:10.1007/s11269-010-9732-7

    Article  Google Scholar 

  • Barlow PM, Desimone LA, Moench AF (2000) Aquifer response to stream-stage and recharge variations.II. Convolution method and applications. J Hydrol 230:211–229. doi:10.1016/S0022-1694(00)00176-1

    Article  Google Scholar 

  • Boufadel MC, Peridier V (2002) Exact analytical expressions for the piezometric profile and water exchange between stream and groundwater during and after a uniform rise of the stream level. Water Resour Res 38(7):27.1–27.6. doi:10.1029/2001WR000780

    Article  Google Scholar 

  • Chen JW, Hsieh HH, Yeh HF, Lee CH (2010) The effect of the variation of river water levels on the estimation of groundwater recharge in the Hsinhuwei River, Taiwan. Environ Earth Sci 59:1297. doi:10.1007/s12665-009-0117-2

    Article  Google Scholar 

  • Darama Y (2001) An analytical solution for stream depletion by cyclic pumping of wells near streams with semipervious beds. Groundwater 39(1):79–86. doi:10.1111/j.1745-6584.2001.tb00353.x

    Article  Google Scholar 

  • Di Matteo L, Dragoni W (2005) Empirical relationships for estimating stream depletion by a well pumping near a gaining stream. Groundwater 43(2):242–249. doi:10.1111/j.1745-6584.2005.0006.x

    Article  Google Scholar 

  • Dong L, Chen J, Fu C, Jiang H (2012) Analysis of groundwater-level fluctuation in a coastal confined aquifer induced by sea-level variation. Hydrogeol J 20(4):719–726. doi:10.1007/s10040-012-0838-2

    Article  Google Scholar 

  • Emikh VN (2008) Mathematical models of groundwater flow with a horizontal drain. Water Res 35(2):205–211. doi:10.1134/S0097807808020097

    Article  Google Scholar 

  • Fen C-S, Yeh HD (2012) Effect of well radius on drawdown solutions obtained with Laplace transform and Green’s function. Water Resour Manag 26:377–390. doi:10.1007/s11269-011-9922-y

    Article  Google Scholar 

  • Feng Q, Wen Z (2016) Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin. Hydrogeol J 24(5):1287–1296. doi:10.1007/s10040-016-1389-8

    Article  Google Scholar 

  • Hall FR, Moench AF (1972) Application of the convolution equation to stream-aquifer relationships. Water Resour Res 8:487–493. doi:10.1029/WR008i002p00487

    Article  Google Scholar 

  • Hantush MM (2005) Modeling stream–aquifer interactions with linear response functions. J Hydrol 311(1):59–79. doi:10.1016/j.jhydrol.2005.01.007

    Article  Google Scholar 

  • Haushild W, Kruse G (1962) Unsteady flow of groundwater into a surface reservoir. Trans Am Soc Civ Eng 127:408–414

    Google Scholar 

  • Huang CS, Lin WS, Yeh HD (2014b) Stream filtration induced by pumping in a confined, unconfined or leaky aquifer bounded by two parallel streams or by a stream and an impervious stratum. J Hydrol 513(26):28–44. doi:10.1016/j.jhydrol.2014.03.039

    Article  Google Scholar 

  • Huang CS, Yang SY, Yeh HD (2014a) Groundwater flow to a pumping well in a sloping fault zone unconfined aquifer. Water Resour Res 50(5):4079–4094. doi:10.1002/2013WR014212

    Article  Google Scholar 

  • Jasrotia AS, Kumar A (2014) Estimation of replenishable groundwater resources and their status of utilization in Jammu Himalaya, J&K, India. Eur Water 48:17–27

    Google Scholar 

  • Kalaidzidou-Paikou N, Karamouzis D, Moraitis D (1997) A finite element model for the unsteady groundwater flow over sloping beds. Water Resour Manag 11(1):69–81. doi:10.1023/A:1007926507718

    Article  Google Scholar 

  • Kim KY, Kim Y, Lee CW, Woo NC (2003) Analysis of groundwater response to tidal effect in a finite leaky confined coastal aquifer considering hydraulic head at source bed. Geosci J 7(2):169–178. doi:10.1007/BF02910221

    Article  Google Scholar 

  • Krajnc M, Gacin M, Krsnik P, Sodja E, Kolenc A (2007) Groundwater quality in Slovenia assessed upon the results of national groundwater monitoring. Eur Water 19(20):37–46

    Google Scholar 

  • Li H, Jiao JJ (2002) Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Adv Water Resour 25(4):417–426. doi:10.1016/S0309-1708(02)00004-0

    Article  Google Scholar 

  • Rai S, Manglik A (2012) An analytical solution of Boussinesq equation to predict water table fluctuations due to time varying recharge and withdrawal from multiple basins, wells and leakage sites. Water Resour Manag 26:243–252. doi:10.1007/s11269-011-9915-x

    Article  Google Scholar 

  • Rai SN, Ramana DV, Thiagarajan S, ManglikA (2001) Modelling of groundwater mound formation resulting from transient recharge. Hydrol Process 15(8):1507–1514. doi: 10.1002/hyp.222

  • Rassam DW, Werner A (2008) Review of Groundwater-surface water Interaction Modelling Approaches and Their Suitability for Australian Conditions. eWater Technical Report, eWater Cooperative Research Centre, Canberra

  • Renu V, Kumar GS (2016) Numerical modeling on benzene dissolution into groundwater and transport of dissolved benzene in a saturated fracture-matrix system. Environ Process 3(4):781–802. doi:10.1007/s40710-016-0166-y

    Article  Google Scholar 

  • Saeedpanah I, Golmohamadi Azar R (2017) New analytical expressions for two-dimensional aquifer adjoining with streams of varying water level. Water Resour Manag 31(1):403–424. doi:10.1007/s11269-016-1533-1

    Article  Google Scholar 

  • Saeedpanah I, Jabbari E, Shayanfar MA (2011) Numerical simulation of groundwater flow via a new approach to the local radial point interpolation meshless method. Int J Comput Fluid D 25(1):17–30. doi:10.1080/10618562.2010.545772

    Article  Google Scholar 

  • Sepúlveda N (2008) Three-dimensional flow in the Storative Semiconfining layers of a leaky aquifer. Groundwater 46(1):144–155. doi:10.1111/j.1745-6584.2007.00361.x

    Google Scholar 

  • Sherif M, Kacimov A, Javadi A, Ebraheem AA (2012) Modeling groundwater flow and seawater intrusion in the coastal aquifer of Wadi ham, UAE. Water Resour Manag 26(3):751–774. doi:10.1007/s11269-011-9943-6

    Article  Google Scholar 

  • Sidiropoulos P, Mylopoulos N, Loukas A (2016) Reservoir-aquifer combined optimization for groundwater restoration: the case of Lake Karla watershed, Greece. Water Utility Journal 12:17–26

    Google Scholar 

  • Srivastava R (2003) Aquifer response to linearly varying stream stage. J Hydrol Eng 8(6):361–364. doi:10.1061/(ASCE)1084-0699(2003)8:6(361)

    Article  Google Scholar 

  • Tatalovich ME, Lee KY, Chrysikopoulos CV (2000) Modeling the transport of contaminants originating from the dissolution of DNAPL pools in aquifers in the presence of dissolved humic substances. Transp Porous Media 38(1–2):93–115. doi:10.1023/A:1006674114600

    Article  Google Scholar 

  • Tsakiris G, Alexakis D (2014) Karstic spring water quality: the effect of groundwater abstraction from the recharge area. Desalin Water Treat 52:2494–2501. doi:10.1080/19443994.2013.800253

    Article  Google Scholar 

  • Tsakiris GP, Soulis JV, Bellos CV (1991) Two-dimensional unsaturated flow in irregularly shaped regions using a finite volume method. Transp Porous Media 6(1):1–12. doi:10.1007/BF00136819

    Article  Google Scholar 

  • Wen Z, Wu F, Feng Q (2016) Non-Darcian flow to a partially penetrating pumping well in a leaky aquifer considering the Aquitard–aquifer Interface flow. J Hydrol Eng 21(12):06016011. doi:10.1061/(ASCE)HE.1943-5584.0001446

    Article  Google Scholar 

  • Xie Y, Cook PG, Simmons CT (2016) Solute transport processes in flow-event-driven stream–aquifer interaction. J Hydrol 538:363–373. doi:10.1016/j.jhydrol.2016.04.031

    Article  Google Scholar 

  • Xie Y, Wu J, Xue Y, Xie C (2014) Modified multiscale finite-element method for solving groundwater flow problem in heterogeneous porous media. J Hydrol Eng 19(8):04014004. doi:10.1061/(ASCE)HE.1943-5584.0000968

    Article  Google Scholar 

  • Yeh WWG (1970) Nonsteady flow to surface reservoir. J Hydraul Div 96(3):609–618

    Google Scholar 

  • Yidana SM, Chegbeleh LP (2013) The hydraulic conductivity field and groundwater flow in the unconfined aquifer system of the Keta strip, Ghana. J Afr Earth Sci 86:45–52. doi:10.1016/j.jafrearsci.2013.06.009

    Article  Google Scholar 

  • Yihdego Y, Al-Weshah RA (2016) Assessment and prediction of Saline Sea water transport in groundwater using 3-D numerical Modelling. Environ Process 4(1):49–73. doi:10.1007/s40710-016-0198-3

    Google Scholar 

  • Zhan H, Zlotnik VA (2002) Groundwater flow to a horizontal or slanted well in an unconfined aquifer. Water Resour Res 38(7):13.1–13.11. doi:10.1029/2001WR000401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Saeedpanah.

Appendix A:

Appendix A:

The Laplace transform can be defined as:

$$ \Lambda \kern0.1em \left( X, Y, p\right)=\underset{0}{\overset{\infty }{\int }}{e}^{- p\eta} H\left( X, Y,\eta \right)\mathrm{d}\eta $$
(A1)

Where Λ denotes the Laplace transform of H and p is the Laplace variable. Application of the Laplace transform to Eqs. (6), (8) and (9), yields:

$$ \frac{d^2}{{d X}^2}\kern0.1em \Lambda \left( X, p\right)+\frac{R}{p}= p\kern0.1em \Lambda \left( X, p\right)- H\left( X,\eta =0\right) $$
(A2)
$$ \Lambda \left( X=0, P\right)=-\frac{1}{p+\lambda} $$
(A3)
$$ \Lambda \kern0.1em \left( X=1, p\right)=0 $$
(A4)

Combining Eq. (A2) with Eq. (7) becomes:

$$ \frac{d^2}{{d X}^2}\kern0.1em \Lambda \left( X, p\right)- p\kern0.1em \Lambda \left( X, P\right)=- R/ p- X+1 $$
(A5)

Equation (A5) is an ordinary differential equation, which can readily be solved as below:

$$ \kern0.1em \Lambda \left( X, p\right)=\left\{ A \sinh \left( X\sqrt{p}\right)+ B \cosh \left( X\sqrt{p}\right)\right\}+\frac{X-1}{p}+\frac{R}{p^2} $$
(A6)

where A and B are constants which can be determined by invoking Eqs. (A3) and (A4) in Eq. (A6):

$$ B=\frac{ p\lambda - R\left(\lambda + p\right)}{p^2\left(\lambda + p\right)};\kern1em A=\frac{- p\lambda + R\left(\lambda + p\right)}{p^2\left(\lambda + p\right)}\frac{ \cosh \sqrt{p}}{ \sinh \sqrt{p}}-\frac{R}{p^2 \sinh \sqrt{p}} $$
(A7)

Substituting these values in Eq. (A6) and simplifying, we get:

$$ \kern0.1em \Lambda \left( X, p\right)=\frac{-\lambda}{p\left(\lambda + p\right)}\frac{ \cosh \sqrt{p}}{ \sinh \sqrt{p}} \sinh \left( X\sqrt{p}\right)+\frac{\lambda}{p\left(\lambda + p\right)} \cosh \left( X\sqrt{p}\right)+\frac{X-1}{p}+\frac{R}{p^2}\frac{ \cosh \sqrt{p}}{ \sinh \sqrt{p}} \sinh \left( X\sqrt{p}\right)-\frac{R}{p^2 \sinh \sqrt{p}} \sinh \left( X\sqrt{p}\right)-\frac{R}{p^2} \cosh \left( X\sqrt{p}\right)+\frac{R}{p^2} $$
(A8)

The inverse Laplace transform can be defined as:

$$ H\left( X,\eta \right)=\sum_{n=1}^{\infty}\underset{p={p}_n}{\operatorname{Re} s}\left[{e}^{p\eta}\Lambda \left( X, p\right)\right] $$
(A9)

Taking the inverse Laplace transform of Eq. (A8) results in Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedpanah, I., Golmohamadi Azar, R. New Analytical Solutions for Unsteady Flow in a Leaky Aquifer between Two Parallel Streams. Water Resour Manage 31, 2315–2332 (2017). https://doi.org/10.1007/s11269-017-1651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1651-4

Keywords

Navigation