Skip to main content
Log in

3H-117, a structural protein of Heliothis virescens ascovirus 3h (HvAV-3h)

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The open reading frame 117 (3h-117) of Heliothis virescens ascovirus 3h (HvAV-3h), which is a conserved coding region present in all completely sequenced ascovirus members, was characterized in this study. By RT-PCR detection, 3h-117 transcription began at 6-h post-infection (hpi) and remained stable until 168 hpi in HvAV-3h-infected Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae. In addition, 3h-117 putatively encodes a 21.5-kDa protein (3H-117) predicted to be a CTD-like phosphatase. Western blot analysis using a prepared rabbit polyclonal antibody specific to 3H-117 showed that the product could be detected at 24 hpi, which remained stably detectable until 168 hpi. The same analysis also demonstrated that the 3H-117 protein localized in the virions of HvAV-3h. Immunofluorescence analysis showed that at 24 hpi, 3H-117 was mainly located in the nuclei of H. armigera larval fat body cells and later spread into the cytoplasm. In summary, our results indicate that 3H-117 is a structural protein of HvAV-3h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Federici BA (1983) Enveloped double-stranded DNA insect virus with novel structure and cytopathology. Proc Natl Acad Sci USA 80(24):7664–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Federici BA, Bideshi DK, Tan Y, Spears T, Bigot Y (2009) Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. Lesser Known Large dsDNA Viruses 328:171–196

    Article  CAS  Google Scholar 

  3. Huang GH, Hou DH, Wang M, Cheng XW, Hu Z (2017) Genome analysis of Heliothis virescens ascovirus 3h isolated from China. Virol Sin 32(2):147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu YY, Xian WF, Xue J, Wei YL, Cheng XW, Wang X (2018) Complete genome sequence of a renamed isolate, Trichoplusia ni ascovirus 6b, from the United States. Genome Announc 6(10):e00148

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li SJ, Wang X, Zhou ZS, Zhu J, Hu J, Zhao YP, Zhou GW, Huang GH (2013) A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3h (HvAV-3h). PLoS ONE 8(12):e85704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bideshi DK, Demattei MV, Rouleux-Bonnin F, Stasiak K, Tan Y, Bigot S, Bigot Y, Federici BA (2006) Genomic sequence of Spodoptera frugiperda ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. J Virol 80(23):11791–11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bigot Y, Rabouille A, Sizaret PY, Hamelin MH, Periquet G (1997) Particle and genomic characteristics of a new member of the Ascoviridae: Diadromus pulchellus ascovirus. J Gen Virol 78(5):1139–1147

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Xue J, Seaborn CP, Arif BM, Cheng XW (2006) Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. Virology 354(1):167–177

    Article  CAS  PubMed  Google Scholar 

  9. Asgari S, Davis J, Wood D, Wilson P, McGrath A (2007) Sequence and organization of the Heliothis virescens ascovirus genome. J Gen Virol 88:1120–1132

    Article  CAS  PubMed  Google Scholar 

  10. Smede M, Furlong MJ, Asgari S (2008) Effects of Heliothis virescens ascovirus (Hvav-3e) on a novel host, Crocidolomia pavonana (Lepidoptera: Crambidae). J Invertebr Pathol 99(3):281–285

    Article  CAS  PubMed  Google Scholar 

  11. Wei YL, Hu J, Li SJ, Chen ZS, Cheng XW, Huang GH (2014) Genome sequence and organization analysis of Heliothis virescens ascovirus 3f isolated from a Helicoverpa zea larva. J Invertebr Pathol 122:40–43

    Article  CAS  PubMed  Google Scholar 

  12. Huang GH, Wang YS, Wang X, Garretson TA, Dai LY, Zhang CX, Cheng XW (2012) Genomic sequence of Heliothis virescens ascovirus 3 g isolated from Spodoptera exigua. J Virol 86(22):12467–12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen ZS, Cheng XW, Wang X, Hou DH, Huang GH (2018) Genomic analysis of a novel isolate Heliothis virescens ascovirus 3i (Hvav-3i) and identification of ascoviral repeat orfs (aros). Adv Virol 163(10):2849–2853

    CAS  Google Scholar 

  14. Tan Y, Spears T, Bideshi DK, Johnson JJ, Hice R, Bigot Y, Federici BA (2009) P64, a novel major virion DNA-binding protein potentially involved in condensing the Spodoptera frugiperda ascovirus 1a genome. J Virol 83(6):2708–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao K, Cui L (2003) Molecular characterization of the major virion protein gene from the Trichoplusia ni ascovirus. Virus Genes 27(1):93–102

    Article  CAS  PubMed  Google Scholar 

  16. Cui L, Cheng X, Li L, Li J (2007) Identification of Trichoplusia ni ascovirus 2c virion structural proteins. J Gen Virol 88:2194–2197

    Article  CAS  PubMed  Google Scholar 

  17. Tan Y, Bideshi DK, Johnson JJ, Bigot Y, Federici BA (2009) Proteomic analysis of the Spodoptera frugiperda ascovirus 1a virion reveals 21 proteins. J Gen Virol 90:359–365

    Article  CAS  PubMed  Google Scholar 

  18. Chen ZS, Cheng XW, Wang X, Hou DH, Huang GH (2019) Proteomic analysis of the Heliothis virescens ascovirus 3i (HvAV-3i) virion. J Gen Virol 100:301–307

    Article  CAS  PubMed  Google Scholar 

  19. Huang GH, Garretson TA, Cheng XH, Holztrager MS, Li SJ, Wang X, Cheng XW (2012) Phylogenetic position and replication kinetics of Heliothis virescens ascovirus 3h (Hvav-3h) isolated from Spodoptera exigua. PLoS ONE 7(7):e40225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106(25):10171–10176

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li XF, Yu H, Zhang CX, Chen H, Wang D (2014) Helicoverpa armigera nucleopolyhedrovirus orf81 is a late gene involved in budded virus production. Adv Virol 159(8):2011–2022

    CAS  Google Scholar 

  24. Federici BA, Vlak JM, Hamm JJ (1990) Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol 71:1661–1668

    Article  CAS  PubMed  Google Scholar 

  25. Boenisch T (2007) Pretreatment for immunohistochemical staining simplified. Appl Immunohistochem Mol Morphol 15(2):208–212

    Article  PubMed  Google Scholar 

  26. Stasiak K, Demattei MV, Federici BA, Bigot Y (2000) Phylogenetic position of the Diadromus pulchellus ascovirus DNA polymerase among viruses with large double-stranded DNA genomes. Gen Virol 81(12):3059–3072

    Article  CAS  Google Scholar 

  27. Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P (2005) A structural perspective of CTD function. Genes Dev 19(12):1401–1415

    Article  CAS  PubMed  Google Scholar 

  28. Tidona CA, Schnitzler P, Kehm R, Darai G (1998) Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution? Virus Genes 16(1):59–66

    Article  CAS  PubMed  Google Scholar 

  29. Li ZQ, Yu H, Huang GH (2018) Changes in lipid, protein and carbohydrate metabolism in Spodoptera exigua larvae associated with infection by Heliothis virescens ascovirus 3h. J Invertebr Pathol 155:55–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Youlin Zhu (Wuhan Institute of Virology, Wuhan, China) for her help during antibody preparation and Dr. Cecil L. Smith (University of Georgia, USA) for editing the English language. This study was supported partly by the National Natural Science Foundation of China (31872027).

Author information

Authors and Affiliations

Authors

Contributions

YZ, HY, and GHH conceived and designed the experiments. YZ, NL, and LH performed the experiments. YZ, GHH wrote the manuscript. All the authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Guo-Hua Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This study does not contain any studies with human participants performed by any of the authors.

Informed consent

This study does not involve any human subject and therefore, there is no need of informed consent.

Additional information

Edited by Seung-Kook Choi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 3 (FAS 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yu, H., He, L. et al. 3H-117, a structural protein of Heliothis virescens ascovirus 3h (HvAV-3h). Virus Genes 55, 688–695 (2019). https://doi.org/10.1007/s11262-019-01679-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01679-7

Keywords

Navigation