Skip to main content

Advertisement

Log in

The BeWo cell line derived from a human placental choriocarcinoma is permissive for respiratory syncytial virus infection

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The respiratory syncytial virus (RSV) is the main pathogen associated with upper respiratory tract infections during early childhood. Vertical transmission of this virus has been suggested in humans, based on observations recorded during animal studies that revealed an association of RSV with persistent structural and functional changes in the developing lungs of the offspring. However, human placentas have not yet been evaluated for susceptibility to RSV infection. In this study, we examined the capacity of RSV to infect a human trophoblast model, the BeWo cell line. Our results suggest that BeWo cells are susceptible to RSV infection since they allow RNA viral replication, viral protein translation, leading to the production of infectious RSV particles. In this report, we demonstrate that a human placenta model system, consisting of BeWo cells, is permissive to RSV infection. Thus, the BeWo cell line may represent a useful model for studies that aim to characterize the events of a possible RSV infection at the human maternal–fetal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Fauroux B, Simoes EAF, Checchia PA, Paes B, Figueras-Aloy J, Manzoni P, Bont L, Carbonell-Estrany X (2017) The burden and long-term respiratory morbidity associated with respiratory syncytial virus infection in early childhood. Infect Dis Ther 6(2):173–197. https://doi.org/10.1007/s40121-017-0151-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arnold R, Konig W (2005) Respiratory syncytial virus infection of human lung endothelial cells enhances selectively intercellular adhesion molecule-1 expression. J Immunol 174(11):7359–7367

    Article  CAS  PubMed  Google Scholar 

  3. Li XQ, Fu ZF, Alvarez R, Henderson C, Tripp RA (2006) Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein. J Virol 80(1):537–540. https://doi.org/10.1128/JVI.80.1.537-540.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rivera-Toledo E, Gomez B (2012) Respiratory syncytial virus persistence in macrophages alters the profile of cellular gene expression. Viruses 4(12):3270–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angel Rico M, Trento A, Ramos M, Johnstone C, Del Val M, Melero JA, Lopez D (2009) Human respiratory syncytial virus infects and induces activation markers in mouse B lymphocytes. Immunol Cell Biol 87(4):344–350. https://doi.org/10.1038/icb.2008.109

    Article  CAS  PubMed  Google Scholar 

  6. Eisenhut M (2006) Extrapulmonary manifestations of severe respiratory syncytial virus infection—a systematic review. Crit Care 10(4):R107. https://doi.org/10.1186/cc4984

    Article  Google Scholar 

  7. Esposito S, Salice P, Bosis S, Ghiglia S, Tremolati E, Tagliabue C, Gualtieri L, Barbier P, Galeone C, Marchisio P, Principi N (2010) Altered cardiac rhythm in infants with bronchiolitis and respiratory syncytial virus infection. BMC Infect Dis 10:305. https://doi.org/10.1186/1471-2334-10-305

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delorme-Axford E, Sadovsky Y, Coyne CB (2014) The placenta as a barrier to viral infections. Annu Rev Virol 1(1):133–146. https://doi.org/10.1146/annurev-virology-031413-085524

    Article  CAS  PubMed  Google Scholar 

  9. Piedimonte G, Walton C, Samsell L (2013) Vertical transmission of respiratory syncytial virus modulates pre- and postnatal innervation and reactivity of rat airways. PLoS ONE 8(4):e61309. https://doi.org/10.1371/journal.pone.0061309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown PM, Harford TJ, Agrawal V, Yen-Lieberman B, Rezaee F, Piedimonte G (2017) Prenatal exposure to respiratory syncytial virus alters postnatal immunity and airway smooth muscle contractility during early-life reinfections. PLoS ONE 12(2):e0168786. https://doi.org/10.1371/journal.pone.0168786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezaee F, Gibson LF, Piktel D, Othumpangat S, Piedimonte G (2011) Respiratory syncytial virus infection in human bone marrow stromal cells. Am J Respir Cell Mol Biol 45(2):277–286. https://doi.org/10.1165/rcmb.2010-0121OC

    Article  CAS  PubMed  Google Scholar 

  12. Rohwedder A, Keminer O, Forster J, Schneider K, Schneider E, Werchau H (1998) Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction. J Med Virol 54(4):320–327

    Article  CAS  PubMed  Google Scholar 

  13. Fonceca AM, Chopra A, Levy A, Noakes PS, Poh MW, Bear NL, Prescott S, Everard ML (2017) Infective respiratory syncytial virus is present in human cord blood samples and most prevalent during winter months. PLoS ONE 12(4):e0173738. https://doi.org/10.1371/journal.pone.0173738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhat P, Anderson DA (2007) Hepatitis B virus translocates across a trophoblastic barrier. J Virol 81(13):7200–7207. https://doi.org/10.1128/JVI.02371-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tzang BS, Chiang SY, Chan HC, Liu CH, Hsu TC (2016) Human parvovirus B19 antibodies induce altered membrane protein expression and apoptosis of BeWo trophoblasts. Mol Med Rep 14(5):4399–4406. https://doi.org/10.3892/mmr.2016.5787

    Article  CAS  PubMed  Google Scholar 

  16. Huang Q, Chen H, Wang F, Brost BC, Li J, Gao Y, Li Z, Gao Y, Jiang SW (2014) Reduced syncytin-1 expression in choriocarcinoma BeWo cells activates the calpain1-AIF-mediated apoptosis, implication for preeclampsia. Cell Mol Life Sci 71(16):3151–3164. https://doi.org/10.1007/s00018-013-1533-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toufaily C, Lokossou AG, Vargas A, Rassart E, Barbeau B (2015) A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model. PLoS ONE 10(3):e0121468. https://doi.org/10.1371/journal.pone.0121468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Melo ASO, Chimelli L, Tanuri A (2017) Congenital zika virus infection: beyond neonatal microcephaly-reply. JAMA Neurol 74(5):610–611. https://doi.org/10.1001/jamaneurol.2017.0051

    Article  PubMed  Google Scholar 

  19. Pham VH, Nguyen TV, Nguyen TT, Dang LD, Hoang NH, Nguyen TV, Abe K (2013) Rubella epidemic in Vietnam: characteristic of rubella virus genes from pregnant women and their fetuses/newborns with congenital rubella syndrome. J Clin Virol 57(2):152–156. https://doi.org/10.1016/j.jcv.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  20. Bebell LM, Riley LE (2015) Ebola virus disease and Marburg disease in pregnancy: a review and management considerations for filovirus infection. Obstet Gynecol 125(6):1293–1298. https://doi.org/10.1097/AOG.0000000000000853

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marinho PS, Cunha AJ, Amim Junior J, Prata-Barbosa A (2017) A review of selected Arboviruses during pregnancy. Matern Health Neonatol Perinatol 3:17. https://doi.org/10.1186/s40748-017-0054-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leon-Juarez M, Martinez-Castillo M, Gonzalez-Garcia LD, Helguera-Repetto AC, Zaga-Clavellina V, Garcia-Cordero J, Flores-Pliego A, Herrera-Salazar A, Vazquez-Martinez ER, Reyes-Munoz E (2017) Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis. https://doi.org/10.1093/femspd/ftx093

    Article  PubMed  Google Scholar 

  23. Polack FP (2018) Respiratory syncytial virus during pregnancy. Clin Infect Dis 66(11):1666–1667. https://doi.org/10.1093/cid/cix1091

    Article  PubMed  Google Scholar 

  24. Manti S, Cuppari C, Lanzafame A, Salpietro C, Betta P, Leonardi S, Perez MK, Piedimonte G (2017) Detection of respiratory syncytial virus (RSV) at birth in a newborn with respiratory distress. Pediatr Pulmonol 52(10):E81–E84. https://doi.org/10.1002/ppul.23775

    Article  PubMed  PubMed Central  Google Scholar 

  25. Piedimonte G, Perez MK (2014) Alternative mechanisms for respiratory syncytial virus (RSV) infection and persistence: could RSV be transmitted through the placenta and persist into developing fetal lungs? Curr Opin Pharmacol 16:82–88. https://doi.org/10.1016/j.coph.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  26. Ross AL, Cannou C, Barre-Sinoussi F, Menu E (2009) Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells. Retrovirology 6:46. https://doi.org/10.1186/1742-4690-6-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delorme-Axford E, Sadovsky Y, Coyne CB (2013) Lipid raft- and SRC family kinase-dependent entry of coxsackievirus B into human placental trophoblasts. J Virol 87(15):8569–8581. https://doi.org/10.1128/JVI.00708-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koi H, Zhang J, Makrigiannakis A, Getsios S, MacCalman CD, Strauss JF 3rd, Parry S (2002) Syncytiotrophoblast is a barrier to maternal-fetal transmission of herpes simplex virus. Biol Reprod 67(5):1572–1579

    Article  CAS  PubMed  Google Scholar 

  29. Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, Marques ET Jr, Cherry S, Sadovsky Y, Coyne CB (2016) Type III interferons produced by human placental trophoblasts confer protection against zika virus infection. Cell Host Microbe 19(5):705–712. https://doi.org/10.1016/j.chom.2016.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan JF, Yip CC, Tsang JO, Tee KM, Cai JP, Chik KK, Zhu Z, Chan CC, Choi GK, Sridhar S, Zhang AJ, Lu G, Chiu K, Lo AC, Tsao SW, Kok KH, Jin DY, Chan KH, Yuen KY (2016) Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg Microbes Infect 5:e93. https://doi.org/10.1038/emi.2016.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan X, Hu T, He H, Qiu H, Wu X, Chen J, Wang M, Chen C, Huang S (2018) Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin. J Biomed Sci 25(1):13. https://doi.org/10.1186/s12929-018-0416-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao B, Diamond MS, Mysorekar IU (2017) Maternal-fetal transmission of zika virus: routes and signals for infection. J Interferon Cytokine Res 37(7):287–294. https://doi.org/10.1089/jir.2017.0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lindholm K, O’Keefe M (2018) Placental cytomegalovirus infection. Arch Pathol Lab Med. https://doi.org/10.5858/arpa.2017-0421-RS

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Beatriz Gomez (UNAM), Dr. Alberto Guzman (INPer), Dra. Veronica Zaga Clavellina (INPer), Dr. Lorena Gutierrez (Cinvestav), and Dr. Yonathan Garfias (UNAM) for the antibodies, cells, and viruses donated for this study. This research was supported by the National Council on Science and Technology CONACYT (CB-2015-01-255007 to M.L.J.) and Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” (212250-3210-21007-03-15 to M.L.J.). L.D.G.G. received a fellowship from CONACYT. Additionally, M.L.J., M.H.I., G.C.J., and H.R.A.C. acknowledge their membership of the National System of Researchers (SNI).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MAVC, JGC, HRAC, and MLJ. Performed the experiments: MAVC, LDGG, TAVP, MSMG and MHI. Contributed reagents/materials/analysis tools: MHI and HRAC. Wrote the paper: MLJ, MMC, and GLR. Coordinated and facilitated the project: MLJ. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to M. León-Juárez.

Ethics declarations

Conflict of interest

All authors declare that no conflicts of interest exist.

Research involving human participants or animals

This article does not contain any study with human participants or animals, performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Hartmut Hengel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Cervantes, M.A., Martínez-Castillo, M., González-García, L.D. et al. The BeWo cell line derived from a human placental choriocarcinoma is permissive for respiratory syncytial virus infection. Virus Genes 55, 406–410 (2019). https://doi.org/10.1007/s11262-019-01646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01646-2

Keywords

Navigation