Skip to main content
Log in

Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

As an opportunist pathogen, Vibrio alginolyticus (V. alginolyticus), causes disease in marine animals. Bacterial contamination of seafood is not uncommon, and phage therapy is considered a safe way to decontaminate such foods to control the emergence of vibriosis. Here, we report on the isolation of a new, virulent phage called vB_ValP_IME271 (designated phage IME271), which infects V. alginolyticus and was isolated from seawater. Phage IME271 displayed good pH (7–9) and temperature tolerance (< 40 °C) and had a broad host range against Vibrio isolates, including 7 strains of V. alginolyticus and11 strains of V. parahaemolyticus. The IME271 genome was sequenced and annotated, the results of which showed that this phage is a Podoviridae family member with a genome length of 50,345 base pairs. The complete genome is double-stranded DNA with a G+C content of 41.4%. Encoded within the genome are 67 putative proteins, of which only 22 coding sequences have known functions, and no tRNAs are present. The BLASTn results for IME271 showed that it only shares similarity with the Vibrio phage VPp1 (sequence identity score of 96% over 87% of the genome) whose host is V. parahaemolyticus. Comparative analysis showed that IME271 and VPp1 share a similar genomic structure, and the structural proteins are highly similar (> 95% similarity score). In summary, our work identified a new lytic Podoviridae bacteriophage, which is infective to V. alginolyticus and V. parahaemolyticus. This bacteriophage could potentially be used to control V. alginolyticus and V. parahaemolyticus infections in marine animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hartley JW, West E, Gothard WP, Hanan HW (1991) Vibrio alginolyticus in the UK. J Infect 23:223

    Article  CAS  PubMed  Google Scholar 

  2. Balebona MC, Andreu MJ, Bordas MA, Zorrilla I, Moriñigo MA, Borrego JJ (1998) Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol 64:4269–4275

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai X (2005) Pathogenicity and drug resistance analysis of V. Parahaemolyticus. J Lab Med Clin

  4. Liu PC, Lin JY, Chuang WH, Lee KK (2004) Isolation and characterization of pathogenic Vibrio harveyi (V. carchariae) from the farmed marine cobia fish Rachycentron canadum L. with gastroenteritis syndrome. World J Microbiol Biotechnol 20:495–499

    Article  Google Scholar 

  5. Zaidenstein R, Sadik C, Lerner L, Valinsky L, Kopelowitz J, Yishai R, Agmon V, Parsons M, Bopp C, Weinberger M (2008) Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerg Infect Dis 14:1875–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramamurthy T, Chowdhury G, Pazhani GP, Shinoda S (2014) Vibrio fluvialis: an emerging human pathogen. Front Microbiol 5:91

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hörmansdorfer S, Wentges H, Neugebaurbüchler K, Bauer J (2000) Isolation of Vibrio alginolyticus from seawater aquaria. Int J Hyg Environ Health 203:169–175

    Article  PubMed  Google Scholar 

  8. Hernández-Robles MF, Álvarez-Contreras AK, Juárez-García P, Natividad-Bonifacio I, Curiel-Quesada E, Vázquez-Salinas C, Quiñones-Ramírez EI (2016) Virulence factors and antimicrobial resistance in environmental strains of Vibrio alginolyticus. Int Microbiol 19:191

    PubMed  Google Scholar 

  9. Lima-Mendez G, Toussaint A, Leplae R (2007) Analysis of the phage sequence space: the benefit of structured information. Virology 365:241

    Article  CAS  PubMed  Google Scholar 

  10. Kutter E (2009) Phage host range and efficiency of plating. Methods Mol Biol 501:141–149

    Article  CAS  PubMed  Google Scholar 

  11. Ellis EL, Max D (1939) The growth of bacteriophage. J Gen Physiol 22:365–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stalin N, Srinivasan P (2016) Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India. Biologicals 44:526–533

    Article  CAS  PubMed  Google Scholar 

  13. Stephenson FH (2010) Chap. 4—working with bacteriophages. Elsevier Inc., Amsterdam

    Google Scholar 

  14. Brabban AD, Hite E, Callaway TR (2005) Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis 2:287–303

    Article  CAS  PubMed  Google Scholar 

  15. Lu S, Le S, Tan Y, Zhu J, Li M, Rao X, Zou L, Li S, Wang J, Jin X (2013) Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS ONE 8:e62933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilcox SA, Toder R, Foster JW (1996) Rapid isolation of recombinant lambda phage DNA for use in fluorescence in situ hybridization. Chromosome Res 4:397

    Article  CAS  PubMed  Google Scholar 

  17. Werner T (2010) Next generation sequencing in functional genomics. Brief Bioinform 11:499

    Article  CAS  PubMed  Google Scholar 

  18. Kot W, Hansen LH, Neve H, Hammer K, Jacobsen S, Pedersen PD, Sørensen SJ, Heller KJ, Vogensen FK (2014) Sequence and comparative analysis of leuconostoc dairy bacteriophages. International J Food Microbiol 176:29–37

    Article  CAS  Google Scholar 

  19. Aziz RK, Daniela B, Best AA, Matthew DJ, Terrence D, Edwards RA, Kevin F, Svetlana G, Glass EM, Michael K (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  CAS  Google Scholar 

  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Birge EA (1994) Bacterial and bacteriophage genetics. Springer, New York

    Book  Google Scholar 

  23. Olia AS, Prevelige PE Jr, Johnson JE, Cingolani G (2011) Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol 18:597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun S, Gao S, Kondabagil K, Xiang Y, Rossmann MG, Rao VB (2012) Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc Natl Acad Sci USA 109:817–822

    Article  PubMed  Google Scholar 

  25. Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Ann Rev Biochem 81:795–822

    Article  CAS  PubMed  Google Scholar 

  26. Nasir A, Caetano-Anollés G (2015) A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv 1:e1500527

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li M, Jin Y, Lin H, Wang J, Jiang X (2018) Complete genome of a novel lytic Vibrio parahaemolyticus Phage VPp1 and characterization of its endolysin for antibacterial activities. J Food Protect 81:1117–1125

    Article  CAS  Google Scholar 

  28. Yele AB, Thawal ND, Sahu PK, Chopade BA (2012) Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch Virol 157:1441–1450

    Article  CAS  PubMed  Google Scholar 

  29. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chadha P, Katare OP, Chhibber S (2016) In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microbial Pathog 99:68–77

    Article  CAS  Google Scholar 

  31. SPS AV-R, Campbell SA, Inglis NF, Scortti M, Foley S, Vázquez-Boland JA (2013) Genome and proteome analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi. Environ Microbiol Rep 5:170–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sandra Cheesman, PhD, from Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by a grant from The National Key Research and Development Program of China (2015AA020108), the National Natural Science Foundation of China (31400107 and 81621005), and the State Key Laboratory of Pathogen and biosecurity (SKLPBS1518 and 14J004).

Author information

Authors and Affiliations

Authors

Contributions

LZ and YT conceived and designed the experiments and critically evaluated the manuscript. FL and TM isolated and identified the phage and conducted the biological characterization experiments. ZX was responsible for the data and sequence analyses and wrote the manuscript. KF, SZ, and JL collected the clinical bacteria and carried out the experiments.

Corresponding authors

Correspondence to Yigang Tong or Lijun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research does not contain any studies with human participants or animals that were performed by any of the authors.

Additional information

Edited by Detlev H. Kruger.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Xing, S., Fu, K. et al. Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271. Virus Genes 55, 218–226 (2019). https://doi.org/10.1007/s11262-018-1622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1622-8

Keywords

Navigation