Skip to main content
Log in

Genome-wide identification and characterization of novel long non-coding RNA in Ruminal tissue affected with sub-acute Ruminal acidosis from Holstein cattle

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Sub-acute ruminal acidosis is a type of metabolic disorder in which affected cattle show a considerable depression of rumen pH. This leads to a dramatic decline in productivity and consequent loss of income for many dairy farms. The objective of the present study is to identify and characterize novel long non-coding RNAs (lncRNAs) in Holstein cattle affected by sub-acute ruminal acidosis. Two replicates from six animals were sequenced that bioinformatically analyzed. Results showed 6679 novel lncRNAs among which 12 intergenic lncRNAs showed differential expression (p value ≤0.05). GO and KEGG analysis revealed that calcium signaling and G protein couple-receptor pathways may be involved in regulating metabolic processes during sub-acute ruminal acidosis. Furthermore, other biological processes including transmembrane transport, adult behavior, neuroactive ligand-receptor interaction, GABAergic synapse, cholinergic synapse were significantly enriched. The present data suggest that these differentially expressed lncRNAs may play regulatory roles in modulating biological processes associated with sub-acute ruminal acidosis in cattle rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdela N (2016) Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: a review of past and recent research at global prospective. Achiev Life Sci 10:187–196

    Google Scholar 

  • Allison MJ, Peel J (1971) The biosynthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem J 121:431–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azlan A, Halim MA, Azzam G (2019) Genome-wide identification and characterization of long intergenic noncoding RNAs in the regenerative flatworm Macrostomum lignano. Genomics. https://doi.org/10.1016/j.ygeno.2019.07.016

    PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, He J, Zhang D (2015) Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. OncoTargets Ther 8:2657

    CAS  Google Scholar 

  • Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2012) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–D986

    PubMed  PubMed Central  Google Scholar 

  • Cipolla GA, De Oliveira JC, Salviano-Silva A, Lobo-Alves SC, Lemos DS, Oliveira LC, Jucoski TS, Mathias C, Pedroso GA, Zambalde EP (2018) Long non-coding RNAs in multifactorial diseases: another layer of complexity. Non-coding RNA 4:13

    PubMed Central  Google Scholar 

  • de Jonge WJ (2015) Neuronal regulation of mucosal response, in mucosal immunology. Elsevier, 929–942

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do DN, Ibeagha-Awemu EM (2017) Non-coding RNA roles in ruminant mammary gland development and lactation. Current Topics in Lactation, chapter 5:55–81. https://doi.org/10.5772/67194

    Google Scholar 

  • Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumor Biol 36:1477–1486

    CAS  Google Scholar 

  • Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L (2017) Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer 16:130

    PubMed  PubMed Central  Google Scholar 

  • Fernandes JC, Acuña SM, Aoki JI, Floeter-Winter LM, Muxel SM (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding RNA 5:17

    CAS  PubMed Central  Google Scholar 

  • Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R (2019) Comprehensive analysis of long non-coding RNA and mRNA expression profiling in immature and mature bovine (Bos taurus) testes. Front Genet 10:646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji E, Kim C, Kim W, Lee EK (2018) Role of long non-coding RNAs in metabolic control. BBA - Gene Regulatory Mechanisms. https://doi.org/10.1016/j.bbagrm.2018.12.006

  • Kern C, Wang Y, Chitwood J, Korf I, Delany M, Cheng H, Medrano JF, Van Eenennaam AL, Ernst C, Ross P (2018) Genome-wide identification of tissue-specific long non-coding RNA in three farm animal species. BMC Genomics 19:684

    PubMed  PubMed Central  Google Scholar 

  • Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    PubMed  PubMed Central  Google Scholar 

  • Koufariotis LT, Chen Y-PP, Chamberlain A, Vander JC, Hayes BJ (2015) A catalogue of novel bovine long noncoding RNA across 18 tissues. PLoS One 10:e0141225

    PubMed  PubMed Central  Google Scholar 

  • Krieger NS, Bushinsky DA (2017) Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis. Am J Physiol Renal Physiol 313:F882–F886

    PubMed  PubMed Central  Google Scholar 

  • Leonhard-Marek S, Becker G, Breves G, Schröder B (2007) Chloride, gluconate, sulfate, and short-chain fatty acids affect calcium flux rates across the sheep forestomach epithelium. J Dairy Sci 90:1516–1526

    CAS  PubMed  Google Scholar 

  • Li A, Zhang J, Zhou Z (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 15:311

    PubMed  PubMed Central  Google Scholar 

  • Li L, Chen H, Gao Y, Wang Y-W, Zhang G-Q, Pan S-H, Ji L, Kong R, Wang G, Jia Y-H (2016) Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther 15:2232–2243

    CAS  PubMed  Google Scholar 

  • Liu G, Zheng X, Xu Y, Lu J, Chen J, Huang X (2015) Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism. Chin Med J 128:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Xiao Z-D, Han L, Zhang J, Lee S-W, Wang W, Lee H, Zhuang L, Chen J, Lin H-K (2016) LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol 18:431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Yang Z, Wu J, Zhang L, Lee S, Shin DJ, Tran M, Wang L (2018) Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 67:1768–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Gui H, Yao L, Yan L, Martens H, Aschenbach JR, Shen Z (2014) Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. Am J Phys Regul Integr Comp Phys 308:R283–R293

    Google Scholar 

  • Mackey E (2013) Effects of ruminal acidosis on rumen papillae transcriptome. Thesis, University of Delaware, Newark, Delaware. Retrieved August 21, 2019, from. http://udspace.udel.edu/handle/19716/12939

  • Melé M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL (2017) Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27:27–37

    PubMed  PubMed Central  Google Scholar 

  • Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397

    CAS  PubMed  Google Scholar 

  • Mongelli A, Gaetano C, Farsetti A, Martelli F (2019) The dark that matters: long non-coding RNAs as master regulators of cellular metabolism in non-communicable diseases. Front Physiol 10:369

    PubMed  PubMed Central  Google Scholar 

  • Mu Y, Lin X, Wang Z, Hou Q, Wang Y, Hu Z (2019) High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle. MicrobiologyOpen 8:e00673

    PubMed  Google Scholar 

  • Owens F, Secrist D, Hill W, Gill D (1998) Acidosis in cattle: a review. J Anim Sci 76:275–286

    CAS  PubMed  Google Scholar 

  • Pan X, Yang L, Xue F, Xin H, Jiang L, Xiong B, Beckers Y (2016) Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. J Dairy Sci 99:8790–8801

    CAS  PubMed  Google Scholar 

  • Plaizier J, Krause D, Gozho G, McBride B (2008) Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 176:21–31

    CAS  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J (2011) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    PubMed  PubMed Central  Google Scholar 

  • Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19:143

    CAS  PubMed  Google Scholar 

  • Ren H, Wang G, Chen L, Jiang J, Liu L, Li N, Zhao J, Sun X, Zhou P (2016) Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus). BMC Genomics 17:67

    PubMed  PubMed Central  Google Scholar 

  • Ren C, Deng M, Fan Y, Yang H, Zhang G, Feng X, Li F, Wang D, Wang F, Zhang Y (2017) Genome-wide analysis reveals extensive changes in lncRNAs during skeletal muscle development in Hu sheep. Genes 8:191

    PubMed Central  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    CAS  PubMed  Google Scholar 

  • Shen H, Lu Z, Xu Z, Chen Z, Shen Z (2017) Associations among dietary non-fiber carbohydrate, ruminal microbiota and epithelium G-protein-coupled receptor, and histone deacetylase regulations in goats. Microbiome 5:123

    PubMed  PubMed Central  Google Scholar 

  • Steele MA, Vandervoort G, AlZahal O, Hook SE, Matthews JC, McBride BW (2011) Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiol Genomics 43:308–316

    CAS  PubMed  Google Scholar 

  • Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166–e166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi M, Penner GB, Beauchemin KA, Oba M (2010) Comparative analysis of gene expression profiles in ruminal tissue from Holstein dairy cows fed high or low concentrate diets. Comp Biochem Physiol D: Genomics Proteomics 5:274–279

    PubMed  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46

    CAS  PubMed  Google Scholar 

  • Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uppal S, Wolf K, Martens H (2003) The effect of short chain fatty acids on calcium flux rates across isolated rumen epithelium of hay-fed and concentrate-fed sheep. J Anim Physiol Anim Nutr 87:12–20

    CAS  Google Scholar 

  • Weikard R, Hadlich F, Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Kuehn C (2018) Long noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning calves in response to different diets. Oncotarget 9:21052

    PubMed  PubMed Central  Google Scholar 

  • Weinberg ZY, Puthenveedu MA (2019) Regulation of G protein-coupled receptor signaling by plasma membrane organization and endocytosis. Traffic 20:121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Sun M, Zhu Y-N, Xia R, Liu Y-W, Ding J, Ma H-W, He X-Z, Zhang Z-H, Liu Z-J, Liu X-H, De W (2015) Long noncoding RNA HOXA-AS2 promotes gastric cancer proliferation by epigenetically silencing P21/PLK3/DDIT3 expression. Oncotarget 6:33587–33601

  • Xue F, Pan X, Jiang L, Guo Y, Xiong B (2018) GC–MS analysis of the ruminal metabolome response to thiamine supplementation during high grain feeding in dairy cows. Metabolomics 14:67

    PubMed  PubMed Central  Google Scholar 

  • Yang B, Jiao B, Ge W, Zhang X, Wang S, Zhao H, Wang X (2018) Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics 19:605

    PubMed  PubMed Central  Google Scholar 

  • Yu L, Tai L, Zhang L, Chu Y, Li Y, Zhou L (2017) Comparative analyses of long non-coding RNA in lean and obese pigs. Oncotarget 8:41440

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Sun P, Sun Z, Zhang J, Zhou J, Gu Y (2013) Cortical GABAergic neurons are more severely impaired by alkalosis than acidosis. BMC Neurol 13:192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Zhu W, Zhu W, Liu J, Mao S (2014) Effect of dietary forage sources on rumen microbiota, rumen fermentation and biogenic amines in dairy cows. J Sci Food Agric 94:1886–1895

    CAS  PubMed  Google Scholar 

  • Zhang R, Zhu W, Mao S (2016) High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle. J Anim Sci Biotechnol 7:42

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Cai W, Li C, Liu S, Zhou C, Yin H, Song J, Zhang Q (2018) Genome-wide identification of novel long non-coding RNAs and their potential associations with milk proteins in Chinese Holstein cows. Front Genet 9:281

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ (2015) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44:D203–D208

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors declare that there is no any conflict of interest. Authors would like to acknowledge a support given to this study by Agricultural Sciences and Natural Resources University of Khuzestan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Fayazi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, B., Fayazi, J., Roshanfekr, H. et al. Genome-wide identification and characterization of novel long non-coding RNA in Ruminal tissue affected with sub-acute Ruminal acidosis from Holstein cattle. Vet Res Commun 44, 19–27 (2020). https://doi.org/10.1007/s11259-020-09769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-020-09769-w

Keywords

Navigation