Skip to main content

Advertisement

Log in

Effect of land use on the structure and diversity of riparian vegetation in the Duero river watershed in Michoacán, Mexico

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Riparian vegetation performs important ecosystem functions, since it maintains regional biodiversity and provides a range of environmental services. However, anthropogenic activity, land use type, and edge effects are factors that modify the riparian species assemblage and properties. The present study analyzes the influence of adjacent land use on the structure and diversity of riparian vegetation in four hydrographic regions that form the watershed of the river Duero, in the state of Michoacán, Mexico. Using a survey of woody plants of dbh ≥ 2.5 cm in ten different 0.1 ha sites, we found that the average number of stems and individuals was lower under agricultural (AGR) and urban (URB) land use, compared to forested areas (FOR). The proportion of multistemmed plants differs among land uses: this value was greater in AGR than in the FOR and URB categories. This proportion also differed among the four hydrographic regions. The land use type FOR presented the highest alpha and beta diversity, with a high number of native species occurring only in areas defined by this land use. The results indicate that the category FOR plays an important role in the conservation of regional flora and is a possible source of germplasm for restoration programs in sites degraded by human disturbance. This study shows how anthropogenic activities affect riparian vegetation and highlights the importance of further study of this ecosystem to apply sustainable management strategies that are compatible with its conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acuña R (1987) Relaciones geográficas del siglo XVI: Michoacán. Relaciones geográficas Siglo XVI 9. Instituto de Investigaciones Antropológicas, Universidad Nacional Autonoma de México, México

  • Aguiar FC, Ferreira MT (2005) Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin. Portugal. Environ Conserv 32(01):30–41. doi:10.1017/S0376892905001992

    Article  Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst 8(1):93–106

    Article  Google Scholar 

  • Camacho-Rico F, Trejo I, Bonfil C (2006) Estructura y composición de la vegetación ribereña de la barranca del río Tembembe, Morelos, México. Bol Soc Bot México 78:17–31

    Google Scholar 

  • Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring and modeling: Conceptual background and Old World case studies. Man and the biosphere series (Book 20). Parthenon Publishing, Paris, pp 285–309

  • Colwell RK (2009) EstimateS v. 8.2.0: Statistical estimation of species richness and shared species from samples. viceroy.eeb.uconn.edu/EstimateS. Accessed 7 Oct 2011

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans 345(1311):101–118

    Article  CAS  Google Scholar 

  • Colwell RK, Chao A, Chazdon RL, Tsung-Jen S (2005) Un nuevo método estadístico para la evaluación de la similitud en la composición de especies con datos de incidencia y abundancia. In: Halffter G, Soberón J, Koleff P, Melic A (eds) Sobre Diversidad Biológica: el significado de las Diversidades Alfa. Beta y Gamma, España, pp 85–108

    Google Scholar 

  • CONAGUA (2002) Determinación de la disponibilidad de agua en el acuifero Zamora, estado de Michoacán. Comisión Nacional del Agua (CONAGUA), México

  • Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth Sci Rev 84:56–86. doi:10.1016/j.earscirev.2007.05.004

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, West Sussex

    Book  Google Scholar 

  • Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329(6137):326–327

    Article  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14(2):342–355. doi:10.1046/j.1523-1739.2000.98081.x

    Article  Google Scholar 

  • Díaz S, Lavorel S, De Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104(52):20684

    Article  PubMed  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1):169–175

    Article  Google Scholar 

  • Dunphy BK, Murphy PG, Lugo AE (2000) The tendency for trees to be multiple-stemmed in tropical and subtropical dry forests: studies of Guanica forest, Puerto Rico. Trop Ecol 41(2):161–168

    Google Scholar 

  • Fernandes MR, Aguiar FC, Ferreira MT (2011) Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landsc Urban Plan 99(2):166–177

    Article  Google Scholar 

  • Ferreira MT, Aguiar FC, Nogueira C (2005) Changes in riparian woods over space and time: influence of environment and land use. For Ecol Manage 212:145–159

    Article  Google Scholar 

  • García E (1973) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geoagrafía, Universinad Nacional Autónoma de México, México

    Google Scholar 

  • Gordon E, Meentemeyer RK (2006) Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphol 82:412–429

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Heartsill-Scalley T, Aide TM (2003) Riparian vegetation and stream condition in a tropical agriculture-secondary forest mosaic. Ecol Appl 13(1):225–234

    Article  Google Scholar 

  • Hubble TCT, Docker BB, Rutherfurd ID (2009) The role of riparian trees in maintaining riverbank stability: a review of Australian experience and practice. Ecol Eng 36(3):292–304

    Article  Google Scholar 

  • Hupp CR, Osterkamp WR (1996) Riparian vegetation and fluvial geomorphic processes. Geomorphology 14(4):277–295. doi:10.1016/0169-555X(95)00042-4

    Google Scholar 

  • INEGI (2000) Conjunto de datos vectoriales y toponimia de las cartas topográficas F13D78, F13D88, F13D89, E13B18, E13B19, E13B29, F14C81, F14A11, E14A21 escala 1:50000. Instituto Nacional de Estadística, Geografía e Informática (INEGI)

    Google Scholar 

  • INEGI (2001) Conjunto de datos vectoriales de uso de suelo y vegetación de las cartas temáticos. E1303 (Colima) y F1312 (Guadalajara) escala 1:250000. Serie II. Instituto Nacional de Estadística, Geografía e Informática (INEGI)

  • Inoue M, Nakagoshi N (2001) The effects of human impact on spatial structure of the riparian vegetation along the Ashida river, Japan. Landsc Urban Plan 53:111–121

    Article  Google Scholar 

  • Lee S-M, Chao A (1994) Estimating population size via sample coverage for closed capture-recapture models. Biometrics 50(1):88–97

    Article  CAS  PubMed  Google Scholar 

  • Lite SJ, Bagstad KJ, Stromberg JC (2005) Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J Arid Environ 63(4):785–813. doi:10.1016/j.jaridenv.2005.03.026

    Google Scholar 

  • Lyon J, Gross NM (2005) Patterns of plant diversity and plant–environmental relationships across three riparian corridors. For Ecol Manage 204:267–278. doi:10.1016/j.foreco.2004.09.019

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. University Press, Oxford

    Google Scholar 

  • Malanson GP (1993) Riparian landscapes, Cambridge studies in ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Meek CS, Richardson DM, Mucina L (2010) A river runs through it: land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biol Conserv 143(1):156–164. doi:10.1016/j.biocon.2009.09.021

    Article  Google Scholar 

  • Mittermeier RA (1988) Primate diversity and the tropical forest. Case studies from Brazil and Madagascar and the importance of the megadiversity countries. In: Wilson EO, Peter FM (eds) Biodiversity. National Academy Press, Washington, DC, pp 145–154

    Google Scholar 

  • Moffatt SF, McLachlan SM, Kenkel NC (2004) Impacts of land use on riparian forest along an urban – rural gradient in southern Manitoba. Plant Ecol 174:119–135

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, Estados Unidos de América

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Ann Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3(2):209–212

    Article  Google Scholar 

  • Nzunda EF, Griffiths ME, Lawes MJ (2007) Multi-stemmed trees in subtropical coastal dune forest: survival strategy in response to chronic disturbance. J Veg Sci 18(5):693–700. doi:10.1111/j.1654-1103.2007.tb02583.x

    Article  Google Scholar 

  • Nzunda EF, Griffiths ME, Lawes MJ (2008) Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Funct Ecol 22(4):577–582. doi:10.1111/j.1365-2435.2008.01405.x

    Article  Google Scholar 

  • Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwat Biol 29(2):243–258. doi:10.1111/j.1365-2427.1993.tb00761.x

    Article  Google Scholar 

  • Osterkamp WR, Hupp CR (2010) Fluvial processes and vegetation—Glimpses of the past, the present, and perhaps the future. Geomorphology 116(3–4):274–285. doi:10.1016/j.geomorph.2009.11.018

    Google Scholar 

  • Pakeman RJ, Quested HM (2007) Sampling plant functional traits: what proportion of the species need to be measured? Appl Veg Sci 10(1):91–96. doi:10.1111/j.1654-109X.2007.tb00507.x

    Article  Google Scholar 

  • Ripley B (2001) The R project in statistical computing. MSOR Connect 1:23–25. doi:10.11120/msor.2001.01010023

    Article  Google Scholar 

  • Rodríguez-Arévalo G (2005) Estudio integral de la calidad del agua en la cuenca del Río Duero. Universidad Michoacana de San Nicolás de Hidalgo, Morelia

    Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Limusa, México, D.F.

  • Rzedowski J (1993) Diversity and origins of the phanerogamic flora of Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico: Origins and distribution. Oxford University Press, Oxford, pp 129–144

    Google Scholar 

  • Rzedowski J (2003) Flora y vegetación silvestre. In: Universidad-Michoacana-de-San-Nicolás-de-Hidalgo, El-Colegio-de-Michoacán (eds) Atlas Geográfico del Estado de Michoacán. EDDISA 2a edn. Editora y Distribuidora EDDISA, S.A. de C.V., Morelia, pp 61–66

  • Sabo JL, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J (2005) Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86(1):56–62

    Article  Google Scholar 

  • Sagers CL, Lyon J (1997) Gradient analysis in a riparian landscape: contrasts among forest layers. For Ecol Manag 96(1–2):13–26. doi:10.1016/S0378-1127(97)00050-9

  • Šálek L, Zahradník D, Marušák R, Jeřábková L, Merganič J (2013) Forest edges in managed riparian forests in the eastern part of the Czech Republic. For Ecol Manag 305:1–10

    Article  Google Scholar 

  • Saunders SC, Chen J, Drummer TD, Crow TR (1999) Modeling temperature gradients across edges over time in a managed landscape. For Ecol Manag 117(1):17–31

    Article  Google Scholar 

  • Scott ML, Friedman JM, Auble GT (1996) Fluvial process and the establishment of bottomland trees. Geomorphology 14(4):327–339. doi:10.1016/0169-555X(95)00046-8

    Google Scholar 

  • Scott ML, Nagler PL, Glenn EP, Valdes-Casillas C, Erker JA, Reynolds EW, Shafroth PB, Gomez-Limon E, Jones CL (2009) Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico. Biodivers Conserv 18(2):247–269. doi:10.1007/s10531-008-9473-6

    Article  Google Scholar 

  • Villarreal ML, Drake S, Marsh SE, McCoy AL (2012) The influence of wastewater subsidy, flood disturbance and neighbouring land use on current and historical patterns of riparian vegetation in a semi-arid watershed. River Res Appl 28(8):1230–1245. doi:10.1002/rra.1510

    Article  Google Scholar 

  • Villaseñor JL, Ortiz E (2013) Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Rev Mex Biodivers. doi:10.7550/rmb.31987

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892. doi:10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

Download references

Acknowledgments

The study was promoted by the Consejo Estatal de la Fresa de Michoacán, A. C. We thank El Colegio de Michoacán for the logistic support provided for the development of the present study. We appreciate the contributions of Dr. Martha A. Velázques Machuca, Dr. José Luis Pimentel, Dr. Martín Sanchez and Marco Hernández who, as part of an interdisciplinary work group of the project “Diagnostic for the sanitation of the river Duero”, gave us valuable insights for the conception and formulation of this work. We also thank Dr. Michael L. Scott, Dr. Patricia Balvanera Levy and Dr. Víctor Arroyo Rodríguez for its valuable comments of the manuscript. We thank Melissa Zermeño and Eumir Zermeño for their support during the fieldwork. Finally, M. C. Ma. Guadalupe Cornejo Tenorio helped us to identification of the herbarium material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Méndez-Toribio.

Additional information

Communicated by Glenn Stewar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez-Toribio, M., Zermeño-Hernández, I. & Ibarra-Manríquez, G. Effect of land use on the structure and diversity of riparian vegetation in the Duero river watershed in Michoacán, Mexico. Plant Ecol 215, 285–296 (2014). https://doi.org/10.1007/s11258-014-0297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0297-z

Keywords

Navigation