Skip to main content
Log in

Multivitamins co-intake can reduce the prevalence of kidney stones: a large-scale cross-sectional study

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

This research aimed to explore the association between changes in the intake of common individual vitamins and combinations of vitamins and the prevalence of kidney calculi.

Methods

We used data from NHANES to investigate the association between nine common vitamins and kidney stone prevalence. Participants were clustered into several vitamin exposure patterns using an unsupervised K-means clustering method. We used logistic regression models and restrictive cubic spline curves to explore the influence of vitamins.

Results

The regression model exposed that compared to lower intake, high intake of vitamin B6 [Q4: OR (95% CI) = 0.76 (0.62, 0.93)], vitamin C [Q4: OR (95% CI) = 0.73 (0.59, 0.90)] and vitamin D [Q4: OR (95% CI) = 0.77 (0.64, 0.94)] individually exerted protective effects against the prevalence of kidney stones. Furthermore, the restrictive cubic spline analysis showed that the protective effect against the prevalence of kidney stones is enhanced as the take of vitamin B6 and vitamin D increased. Moreover, with the increase in vitamin C intake, its protective effect may turn into a risk factor. Regarding mixed exposure, Cluster 4 exhibited a significant protective effect against kidney stones compared with Cluster 1 [Model 3: OR (95% CI) = 0.79 (0.64, 0.98)].

Conclusions

Our research revealed that high levels of vitamin B6 and vitamin D intake were linked to a lower prevalence of kidney stone. With the gradual increase intake of vitamin C, the prevalence of kidney calculi decreased first and then increased. In addition, the co-exposure of nine vitamins is a protective factor for kidney stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used for analysis are publicly available on the NHANES website, and data are available at https://wwwn.cdc.gov/nchs/nhanes/search/default.aspx.

References

  1. Wang W, Fan J, Huang G, Li J, Zhu X, Tian Y, Su L (2017) Prevalence of kidney stones in mainland China: a systematic review. Sci Rep 7:41630. https://doi.org/10.1038/srep41630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng F, Yu W, Zhang X, Yang S, Xia Y, Ruan Y (2010) Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol 24(10):1579–1582. https://doi.org/10.1089/end.2009.0581

    Article  PubMed  Google Scholar 

  3. Osther SS, Andersen K, Andersen M, Andreassen KH, Bube S, Bigum LH, Osther PJS (2023) Kidney stone disease. Ugeskr Laeger 185(14):V11220687

    PubMed  Google Scholar 

  4. Hesse A, Brändle E, Wilbert D, Köhrmann K-U, Alken P (2003) Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 versus 2000. Eur Urol 44(6):709–713. https://doi.org/10.1016/s0302-2838(03)00415-9

    Article  CAS  PubMed  Google Scholar 

  5. Hesse A, Siener R (1997) Current aspects of epidemiology and nutrition in urinary stone disease. World J Urol 15(3):165–171. https://doi.org/10.1007/BF02201853

    Article  CAS  PubMed  Google Scholar 

  6. Taylor EN, Stampfer MJ, Curhan GC (2005) Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68(3):1230–1235. https://doi.org/10.1111/j.1523-1755.2005.00516.x

    Article  PubMed  Google Scholar 

  7. Baker PW, Coyle P, Bais R, Rofe AM (1993) Influence of season, age, and sex on renal stone formation in South Australia. Med J Aust 159(6):390–392. https://doi.org/10.5694/j.1326-5377.1993.tb137913.x

    Article  CAS  PubMed  Google Scholar 

  8. Lieske JC, Rule AD, Krambeck AE, Williams JC, Bergstralh EJ, Mehta RA, Moyer TP (2014) Stone composition as a function of age and sex. Clin J Am Soc Nephrol 9(12):2141–2146. https://doi.org/10.2215/CJN.05660614

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siener R (2021) Nutrition and kidney stone disease. Nutrients. https://doi.org/10.3390/nu13061917

    Article  PubMed  PubMed Central  Google Scholar 

  10. Siener R (2002) The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur Urol 42(3):289–296. https://doi.org/10.1016/S0302-2838(02)00316-0

    Article  PubMed  Google Scholar 

  11. Wolf G (1984) Multiple functions of vitamin A. Physiol Rev 64(3):873–937. https://doi.org/10.1152/physrev.1984.64.3.873

    Article  CAS  PubMed  Google Scholar 

  12. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J-H, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22(1):18–35. https://doi.org/10.1080/07315724.2003.10719272

    Article  CAS  PubMed  Google Scholar 

  13. Cui Y, Zhou H, Wei M, Song W, Di D, Zhang R, Wang Q (2022) Multiple vitamin co-exposure and mortality risk: a prospective study. Clin Nutr 41(2):337–347. https://doi.org/10.1016/j.clnu.2021.12.010

    Article  CAS  PubMed  Google Scholar 

  14. Liu Z, Su Y, Chen Q, Xiao L, Zhao X, Wang F, Zhang H (2023) Association of dietary intake of vitamin E with chronic obstructive pulmonary disease events in US adults: a cross-sectional study of NHANES 2013–2018. Front Nutr. https://doi.org/10.3389/fnut.2023.1124648

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wan Z, Guo J, Pan A, Chen C, Liu L, Liu G (2021) Association of serum 25-hydroxyvitamin D concentrations with all-cause and cause-specific mortality among individuals with diabetes. Diabetes Care 44(2):350–357. https://doi.org/10.2337/dc20-1485

    Article  CAS  PubMed  Google Scholar 

  16. Peerapen P, Thongboonkerd V (2023) Kidney stone prevention. Adv Nutr. https://doi.org/10.1016/j.advnut.2023.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Zhang Y, Zhang J, Deng Q, Liang H (2021) Recent advances on the mechanisms of kidney stone formation (review). Int J Mol Med 48(2):149. https://doi.org/10.3892/ijmm.2021.4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grases F, Garcia-Gonzalez R, Genestar C, Torres JJ, March JG (1998) Vitamin A and urolithiasis. Clin Chim Acta 269(2):147–157. https://doi.org/10.1016/S0009-8981(97)00198-8

    Article  CAS  PubMed  Google Scholar 

  19. Sakly R, Fekih M, Ben Amor A, Najjar MF, Mbazaa M (2003) Rôle possible de la carence en vitamines A et E dans les lithiases idiopathiques chez l’homme. Ann d’Urol 37(4):217–219. https://doi.org/10.1016/S0003-4401(03)00074-3

    Article  CAS  Google Scholar 

  20. Mechanism of Urolithiasis in Vitamin A-Deficient Rats (2009) Nutr Rev 49(8):249–250. https://doi.org/10.1111/j.1753-4887.1991.tb03040.x

  21. Uebanso T, Suyama M, Shimohata T, Mawatari K, Takahashi A (2021) Effect of vitamin B2-deficient diet on hydroxyproline- or obesity-induced hyperoxaluria in mice. Mol Nutr Food Res 65(15):e2100226. https://doi.org/10.1002/mnfr.202100226

    Article  CAS  PubMed  Google Scholar 

  22. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1996) A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J Urol 155(6):1847–1851

    Article  CAS  PubMed  Google Scholar 

  23. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (1999) Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol 10(4):840. https://doi.org/10.1681/ASN.V104840

    Article  CAS  PubMed  Google Scholar 

  24. Bargagli M, Ferraro PM, Vittori M, Lombardi G, Gambaro G, Somani B (2021) Calcium and vitamin D supplementation and their association with kidney stone disease: a narrative review. Nutrients 13(12):4363. https://doi.org/10.3390/nu13124363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Messa P, Castellano G, Vettoretti S, Alfieri CM, Giannese D, Panichi V, Cupisti A (2023) Vitamin D and calcium supplementation and urolithiasis: a controversial and multifaceted relationship. Nutrients 15(7):1724. https://doi.org/10.3390/nu15071724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anbazhagan M, Hariprasad C, Samudram P, Latha E, Latha M, Selvam R (1999) Effect of oral supplementation of vitamin E on urinary risk factors in patients with hyperoxaluria. J Clin Biochem Nutr 27(1):37–47. https://doi.org/10.3164/jcbn.27.37

    Article  CAS  Google Scholar 

  27. Chalmers AH, Cowley DM, Brown JM (1986) A possible etiological role for ascorbate in calculi formation. Clin Chem 32(2):333–336

    Article  CAS  PubMed  Google Scholar 

  28. Urivetzky M, Kessaris D, Smith AD (1992) Ascorbic acid overdosing: a risk factor for calcium oxalate nephrolithiasis. J Urol 147(5):1215–1218. https://doi.org/10.1016/s0022-5347(17)37521-3

    Article  CAS  PubMed  Google Scholar 

  29. Hughes C, Dutton S, Truswell AS (1981) High intakes of ascorbic acid and urinary oxalate. Int J Food Sci Nutr 35(4):274–280. https://doi.org/10.3109/09637488109143053

    Article  CAS  Google Scholar 

  30. NHANES Survey Methods and Analytic Guidelines (n.d.). Retrieved April 22, 2023, from https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx

  31. MEC In-Person Dietary Interviewers Procedures Manual (2017). Available: https://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_dietarymec.pdf

  32. Tallman DA, Latifi E, Kaur D, Sulaheen A, Ikizler TA, Chinna K, Khosla P (2020) Dietary patterns and health outcomes among African American maintenance hemodialysis patients. Nutrients 12(3):797. https://doi.org/10.3390/nu12030797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Karvonen-Gutierrez CA, Herman WH, Mukherjee B, Harlow SD, Park SK (2020) Urinary metals and incident diabetes in midlife women: study of women’s health across the nation (SWAN). BMJ Open Diabetes Res Care 8(1):e001233. https://doi.org/10.1136/bmjdrc-2020-001233

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rattan V, Sidhu H, Vaidyanathan S, Thind SK, Nath R (1994) Effect of combined supplementation of magnesium oxide and pyridoxine in calcium–oxalate stone formers. Urol Res 22(3):161–165. https://doi.org/10.1007/BF00571844

    Article  CAS  PubMed  Google Scholar 

  35. Mitwalli A, Ayiomamitis A, Grass L, Oreopoulos DG (1988) Control of hyperoxaluria with large doses of pyridoxine in patients with kidney stones. Int Urol Nephrol 20(4):353–359. https://doi.org/10.1007/BF02549567

    Article  CAS  PubMed  Google Scholar 

  36. Kaul P, Sidhu H, Sharma SK, Nath R (1996) Calculogenic potential of galactose and fructose in relation to urinary excretion of lithogenic substances in vitamin B6 deficient and control rats. J Am Coll Nutr 15(3):295–302. https://doi.org/10.1080/07315724.1996.10718601

    Article  CAS  PubMed  Google Scholar 

  37. Ferraro PM, Taylor EN, Gambaro G, Curhan GC (2018) Vitamin B6 intake and the risk of incident kidney stones. Urolithiasis 46(3):265–270. https://doi.org/10.1007/s00240-017-0999-5

    Article  CAS  PubMed  Google Scholar 

  38. Baxmann AC, De OG, Mendonça C, Heilberg IP (2003) Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int 63(3):1066–1071. https://doi.org/10.1046/j.1523-1755.2003.00815.x

    Article  CAS  PubMed  Google Scholar 

  39. Robitaille L, Mamer OA, Miller WH, Levine M, Assouline S, Melnychuk D, Hoffer LJ (2009) Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism 58(2):263–269. https://doi.org/10.1016/j.metabol.2008.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chalmers A, Cowley D, McWhinney B (1985) Stability of ascorbate in urine: relevance to analyses for ascorbate and oxalate. Clin Chem 31:1703–1705. https://doi.org/10.1093/clinchem/31.10.1703

    Article  CAS  PubMed  Google Scholar 

  41. Ferraro PM, Curhan GC, Gambaro G, Taylor EN (2016) Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am J Kidney Dis 67(3):400–407. https://doi.org/10.1053/j.ajkd.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  42. Thamilselvan V, Menon M, Thamilselvan S (2014) Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid: physiological levels of urinary oxalate induces oxidative injury. BJU Int 114(1):140–150. https://doi.org/10.1111/bju.12642

    Article  CAS  PubMed  Google Scholar 

  43. Curhan GC, Willett WC, Knight EL, Stampfer MJ (2004) Dietary factors and the risk of incident kidney stones in younger women: nurses’ health study II. Arch Intern Med 164(8):885. https://doi.org/10.1001/archinte.164.8.885

    Article  PubMed  Google Scholar 

  44. Bouderlique E, Tang E, Perez J, Coudert A, Bazin D, Verpont M-C, Letavernier E (2019) Vitamin D and calcium supplementation accelerates randall’s plaque formation in a murine model. Am J Pathol 189(11):2171–2180. https://doi.org/10.1016/j.ajpath.2019.07.013

    Article  CAS  PubMed  Google Scholar 

  45. Letavernier E, Verrier C, Goussard F, Perez J, Huguet L, Haymann J-P, Daudon M (2016) Calcium and vitamin D have a synergistic role in a rat model of kidney stone disease. Kidney Int 90(4):809–817. https://doi.org/10.1016/j.kint.2016.05.027

    Article  CAS  PubMed  Google Scholar 

  46. Malihi Z, Wu Z, Stewart AW, Lawes CM, Scragg R (2016) Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr 104(4):1039–1051. https://doi.org/10.3945/ajcn.116.134981

    Article  CAS  PubMed  Google Scholar 

  47. Ferraro PM, Taylor EN, Gambaro G, Curhan GC (2017) Vitamin D intake and the risk of incident kidney stones. J Urol 197(2):405–410. https://doi.org/10.1016/j.juro.2016.08.084

    Article  CAS  PubMed  Google Scholar 

  48. Curhan GC (1997) Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 126(7):497. https://doi.org/10.7326/0003-4819-126-7-199704010-00001

    Article  CAS  PubMed  Google Scholar 

  49. Sharifi N, Amani R, Hajiani E, Cheraghian B (2014) Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine 47(1):70–80. https://doi.org/10.1007/s12020-014-0336-5

    Article  CAS  PubMed  Google Scholar 

  50. Carlberg C (2014) The physiology of vitamin D—far more than calcium and bone. Front Physiol. https://doi.org/10.3389/fphys.2014.00335

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tavasoli S, Taheri M (2019) Vitamin D and calcium kidney stones: a review and a proposal. Int Urol Nephrol 51(1):101–111. https://doi.org/10.1007/s11255-018-1965-z

    Article  CAS  PubMed  Google Scholar 

  52. Wigner P, Grębowski R, Bijak M, Szemraj J, Saluk-Bijak J (2021) The molecular aspect of nephrolithiasis development. Cells 10(8):1926. https://doi.org/10.3390/cells10081926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simon JA, Hudes ES (1999) Relation of serum ascorbic acid to serum vitamin B12, serum ferritin, and kidney stones in US adults. Arch Intern Med 159(6):619. https://doi.org/10.1001/archinte.159.6.619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks for all the staff associated with the NHANES database and all the subjects who participated in this experiment. I would also like to thank all the authors for their joint efforts in determining the final version of this article.

Funding

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, RX and HZ; data collection, HZ and ZL; data sorting and analysis, HZ, ZL, YH, HC, SW, HH, CH; software, ZL; validation, HZ, ZL, YH, HC; validation, RX; writing—original draft preparation, all authors; writing—review and editing, all authors; supervision and project administration, RX.

Corresponding author

Correspondence to Ran Xu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Ethical approval

Data of this research were taken from the National Health and Nutrition Examination Survey (NHANES) 2007–2018. The study was conducted in accordance with the Declaration of Helsinki, and study protocol was approved by the NCHS Institutional Review Board (Continuation of Protocol #2005-06, Protocol #2011-17, Continuation of Protocol #2011-17, Protocol #2018-01).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Liu, Z., He, Y. et al. Multivitamins co-intake can reduce the prevalence of kidney stones: a large-scale cross-sectional study. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04021-9

Keywords

Navigation