Skip to main content

Advertisement

Log in

Echocardiographic predictors of interatrial block in patients with severe chronic kidney disease

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Interatrial block (IAB), defined as a conduction delay between the right and left atrium, is manifested on the electrocardiogram as a prolonged P-wave duration. Large number of studies recently have been published regarding the prevalence of IAB and its associations with the risk of atrial fibrillation and ischemic stroke. Cardiovascular diseases are the leading causes of mortality in chronic kidney disease (CKD). In this study, we aimed to investigate echocardiographic predictors of IAB in patients with severe CKD.

Methods

This study enrolled a total of 155 patients [male: 95 (61.3%), mean age: 56.3 ± 12.8 years] with severe CKD (glomerular filtration rate < 30 mL/min). All patients were evaluated by electrocardiography and transthoracic echocardiography. IAB was defined as P wave duration of ≥ 120 ms on electrocardiography.

Results

Electrocardiography revealed IAB in 54 patients. The baseline demographic characteristics of the patients were similar in both groups with and without IAB. Left atrial diameter (LAD), left ventricular end-systolic and end-diastolic diameters, interventricular septal thickness, posterior wall thickness, left ventricular mass, left ventricular mass index (LVMI), and the prevalence of left ventricular hypertrophy were found to be significantly increased in patients with IAB. Increased LAD (OR = 1.119; 95% CI 1.019–1.228; p = 0.019) and LVMI (OR = 1.036; 95% CI 1.003–1.070; p = 0.031) were found to be independent predictors of IAB.

Conclusion

A significant association exists between the presence of IAB and echocardiographic parameters related to left ventricular hypertrophy and left atrial dilatation. Presence of IAB may be an additional and easy diagnostic marker for risk stratification of patients with severe CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parekh RS, Carroll CE, Wolfe RA, Port FK (2002) Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr 141:191–197

    Article  CAS  PubMed  Google Scholar 

  2. Saeed F, Arrigain S, Schold JD, Nally JV Jr, Navaneethan SD (2019) What are the risk factors for one-year mortality in older patients with chronic kidney disease? An analysis of the cleveland clinic CKD registry. Nephron 141(2):98–104

    Article  PubMed  Google Scholar 

  3. Wang AY (2007) Cardiovascular risk factors in peritoneal dialysis patients revisited. Perit Dial Int 27(Suppl 2):S223–S227

    PubMed  Google Scholar 

  4. García-López E, Carrero JJ, Suliman ME, Lindholm B, Stenvinkel P (2007) Risk factors for cardiovascular disease in patients undergoing peritoneal dialysis. Perit Dial Int 27(Suppl 2):S205–S209

    PubMed  Google Scholar 

  5. Bayés de Luna A, Platonov P, Cosio FG et al (2012) Interatrial blocks. A separate entity from left atrial enlargement: a consensus report. J Electrocardiol 45:445–451

    Article  PubMed  Google Scholar 

  6. Conde D, Seoane L, Gysel M et al (2015) Bayés’ syndrome: the association between interatrial block and supraventricular arrhythmias. Expert Rev Cardiovasc Ther 13:541–550

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen JB, Kühl JT, Pietersen A et al (2015) P-wave duration and the risk of atrial fibrillation: results from the Copenhagen ECG study. Heart Rhythm 12:1887–1895

    Article  PubMed  Google Scholar 

  8. O’Neal WT, Zhang ZM, Loehr LR et al (2016) Electrocardiographic advanced inter-atrial block and atrial fibrillation risk in the general population. Am J Cardiol 117:1755–1759

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martínez-Sellés M, Robledo LA, Baranchuk A (2017) Interatrial block and the risk of ischemic stroke. J Atheroscler Thromb 24(2):185–186

    Article  PubMed  PubMed Central  Google Scholar 

  10. O’Neal WT, Kamel H, Zhang ZM et al (2016) Advanced interatrial block and ischemic stroke: the atherosclerosis risk in communities study. Neurology 87:352–356

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ariyarajah V, Kranis M, Apiyasawat S, Spodick DH (2007) Potential factors that affect electrocardiographic progression of interatrial block. Ann Noninvasive Electrocardiol 12(1):21–26

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pang H, Ronderos R, Pérez-Riera AR, Femenía F, Baranchuk A (2011) Reverse atrial electrical remodeling: a systematic review. Cardiol J 18(6):625–631

    Article  PubMed  Google Scholar 

  13. Scharer K, Schmidt KG, Soergel M (1999) Cardiac function and structure in patients with chronic renal failure. Pediatr Nephrol 13:951–965

    Article  CAS  PubMed  Google Scholar 

  14. McCullough PA, Assad H (2012) Diagnosis of cardiovascular disease in patients with chronic kidney disease. Blood Purif 33:112–118

    Article  PubMed  Google Scholar 

  15. Solak Y, Gul EE, Kayrak M et al (2013) Electrocardiographic P-wave characteristics in patients with end-stage renal disease: P-index and interatrial block. Int Urol Nephrol 45(2):511–517

    Article  PubMed  Google Scholar 

  16. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    Article  CAS  PubMed  Google Scholar 

  17. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130(6):461–470

    Article  CAS  PubMed  Google Scholar 

  18. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  19. Saran R, Robinson B, Abbott KC et al (2017) US Renal Data System 2016 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 69(3 Suppl 1):A7–A8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eckardt KU (1999) Cardiovascular consequences of renal anaemia and erythropoietin therapy. Nephrol Dial Transplant 14:1317–1323

    Article  CAS  PubMed  Google Scholar 

  21. Juan-Garcia I, Puchades MJ, Sanjuan R et al (2012) Echocardiographic impact of hydration status in dialysis patients. Nefrologia 32:94–102

    PubMed  Google Scholar 

  22. Poulikakos D, Ross L, Recio-Mayoral A et al (2014) Left ventricular hypertrophy and endothelial dysfunction in chronic kidney disease. Eur Heart J Cardiovasc Imaging 15:56–61

    Article  PubMed  Google Scholar 

  23. Ky B, Shults J, Keane MG et al (2013) FGF23 modifies the relationship between vitamin D and cardiac remodeling. Circ Heart Fail 6:817–824

    Article  CAS  PubMed  Google Scholar 

  24. London GM, Fabiani F, Marchais SJ et al (1987) Uremic cardiomyopathy: an inadequate left ventricular hypertrophy. Kidney Int 31:973–980

    Article  CAS  PubMed  Google Scholar 

  25. Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paoletti E, De Nicola L, Gabbai FB et al (2016) Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension. Clin J Am Soc Nephrol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  27. Eckardt KU, Scherhag A, Macdougall IC et al (2009) Left ventricular geometry predicts cardiovascular outcomes associated with anemia correction in CKD. J Am Soc Nephrol 20:2651–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paoletti E, Specchia C, Di Maio G et al (2004) The worsening of left ventricular hypertrophy is the strongest predictor of sudden cardiac death in haemodialysis patients: a 10 year survey. Nephrol Dial Transplant 19:1829–1834

    Article  PubMed  Google Scholar 

  29. Tsao CW, Gona PN, Salton CJ et al (2015) Left ventricular structure and risk of cardiovascular events: a Framingham Heart Study cardiac magnetic resonance study. J Am Heart Assoc 4:e002188

    PubMed  PubMed Central  Google Scholar 

  30. Kahan T, Bergfeldt L (2005) Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart 91:250–256

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alexander B, Baranchuk A, Haseeb S et al (2018) Interatrial block predicts atrial fibrillation in patients with carotid and coronary artery disease. J Thorac Dis 10:4328–4334

    Article  PubMed  PubMed Central  Google Scholar 

  32. Çinier G, Tekkeşin Aİ, Genç D et al (2018) Interatrial block as a predictor of atrial fibrillation in patients with ST-segment elevation myocardial infarction. Clin Cardiol 41:1232–1237

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boles U, Almuntaser I, Brown A, Murphy RR, Mahmud A, Feely J (2010) Ventricular activation time as a marker for diastolic dysfunction in early hypertension. Am J Hypertens 23(7):781–785

    Article  CAS  PubMed  Google Scholar 

  34. Sigwart U, Grbic M, Goy JJ, Kappenberger L (1990) Left atrial function in acute transient left ventricular ischemia produced during percutaneous transluminal coronary angioplasty of the left anterior descending coronary artery. Am J Cardiol 65:282–286

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez M, Lorenzo V (2009) Progress in uremic toxin research: parathyroid hormone, a uremic toxin. Semin Dial 22:363–368

    Article  PubMed  Google Scholar 

  36. Mitsnefes MM, Kimball TR, Kartal J et al (2005) Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol 16:2796–2803

    Article  CAS  PubMed  Google Scholar 

  37. Jono S, Nishizawa Y, Shioi A, Morii H (1997) Parathyroid hormone related peptide as a regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17:1135–1142

    Article  CAS  PubMed  Google Scholar 

  38. Lipscombe D (2002) L-type calcium channels. High and new lows. Circ Res 90:933–935

    Article  CAS  PubMed  Google Scholar 

  39. Nitta K, Yajima A, Tsuchiya K (2017) Management of osteoporosis in chronic kidney disease. Intern Med 56(24):3271–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No financial funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed planning, conduct, and reporting of the work. All authors had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Macit Kalçık.

Ethics declarations

Conflict of interest

All of the authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalçık, M., Yetim, M., Doğan, T. et al. Echocardiographic predictors of interatrial block in patients with severe chronic kidney disease. Int Urol Nephrol 52, 933–941 (2020). https://doi.org/10.1007/s11255-020-02430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02430-0

Keywords

Navigation