Skip to main content
Log in

Parameterized Inequalities of Different Types for Preinvex Functions with Respect to another Function via Generalized Fractional Integral Operators and their Applications

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove an identity with two parameters for a function differentiable with respect to another function via generalized integral operator. By applying the established identity, we discover the generalized trapezium, midpoint, and Simpson-type integral inequalities. It is indicated that the results of the present research provide integral inequalities for almost all fractional integrals discovered in recent decades. Various special cases are identified. Some applications of the presented results to special means and new error estimates for the trapezium and midpoint quadrature formulas are analyzed. The ideas and techniques of the present paper may stimulate further research in the field of integral inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Aslani,M. R. Delavar, and S. M. Vaezpour, “Inequalities of Fejér type related to generalized convex functions with applications,” Int. J. Anal. Appl., 16, No. 1, 38–49 (2018).

    MATH  Google Scholar 

  2. F. X. Chen and S. H. Wu, “Several complementary inequalities to inequalities of Hermite–Hadamard type for s-convex functions,” J. Nonlin. Sci. Appl., 9, No. 2, 705–716 (2016).

    Article  MathSciNet  Google Scholar 

  3. Y. M. Chu, M. A. Khan, T. U. Khan, and T. Ali, “Generalizations of Hermite–Hadamard type inequalities for MT-convex functions,” J. Nonlin. Sci. Appl., 9, No. 5, 4305–4316 (2016).

    Article  MathSciNet  Google Scholar 

  4. M. R. Delavar and S. S. Dragomir, “On 𝜂-convexity,” Math. Inequal. Appl., 20, 203–216 (2017).

    MathSciNet  MATH  Google Scholar 

  5. M. R. Delavar and M. De La Sen, Some Generalizations of Hermite–Hadamard Type Inequalities, vol. 5, Article number 1661, SpringerPlus (2016).

  6. S. S. Dragomir and R. P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” Appl. Math. Lett., 11, No. 5, 91–95 (1998).

    Article  MathSciNet  Google Scholar 

  7. G. Farid, “Existence of a unified integral operator and its consequences in fractional calculus,” Sci. Bull. Politech. Univ. Buchar. Ser. A (to appear).

  8. G. Farid and A. U. Rehman, “Generalizations of some integral inequalities for fractional integrals,” Ann. Math. Sil., 31, 14 (2017).

    Google Scholar 

  9. J. Hristov, “Response functions in linear viscoelastic constitutive equations and related fractional operators,” Math. Model. Nat. Phenom., 14, No. 3, Paper No. 305 (2019), 34 pp.

  10. M. Jleli and B. Samet, “On Hermite–Hadamard type inequalities via fractional integral of a function with respect to another function,” J. Nonlin. Sci. Appl., 9, 1252–1260 (2016).

  11. A. Kashuri and R. Liko, “Some new Hermite–Hadamard type inequalities and their applications,” Stud. Sci. Math. Hungar., 56, No. 1, 103–142 (2019).

  12. U. N. Katugampola, “New approach to a generalized fractional integral,” Appl. Math. Comput., 218, No. 3, 860–865 (2011).

    Article  MathSciNet  Google Scholar 

  13. M. A. Khan, Y. M. Chu, A. Kashuri, and R. Liko, “Hermite–Hadamard type fractional integral inequalities for MT(r;g,m,𝜙)-preinvex functions,” J. Comput. Anal. Appl., 26, No. 8, 1487–1503 (2019).

  14. M. A. Khan, Y. M. Chu, A. Kashuri, R. Liko, and G. Ali, “Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations,” J. Funct. Spaces, Article ID 6928130 (2018), 9 pp.

  15. A. A. Kilbas, O. I. Marichev, and S. G. Samko, Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach Science Publishers, Yverdon (1993).

    MATH  Google Scholar 

  16. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applications of fractional differential equations,” North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam (2006).

  17. R. Khalil, M. A. Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivatives,” J. Comput. Appl. Math., 264, 65–70 (2014).

    Article  MathSciNet  Google Scholar 

  18. B. Ahmad, A. Alsaedi, M. Kirane, and B. T. Torebek, “Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via fractional integrals,” J. Comput. Appl. Math., 353, 120–129 (2019).

  19. W. J. Liu, “Some Simpson type inequalities for h-convex and (𝛼,m)-convex functions,” J. Comput. Anal. Appl., 16, No. 5, 1005–1012 (2014).

  20. W. Liu, W. Wen, and J. Park, “Hermite–Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals,” J. Nonlin. Sci. Appl., 9, 766–777 (2016).

    Article  MathSciNet  Google Scholar 

  21. C. Luo, T. S. Du, M. A. Khan, A. Kashuri, and Y. Shen, “Some k-fractional integrals inequalities through generalized λ𝜙m-MTpreinvexity,” J. Comput. Anal. Appl., 27, No. 4, 690–705 (2019).

    Google Scholar 

  22. M. V. Mihai, “Some Hermite–Hadamard type inequalities via Riemann–Liouville fractional calculus,” Tamkang J. Math., 44, No. 4, 411–416 (2013).

    Article  MathSciNet  Google Scholar 

  23. S. Mubeen and G. M. Habibullah, “k-Fractional integrals and applications,” Int. J. Contemp. Math. Sci., 7, 89–94 (2012).

    MathSciNet  MATH  Google Scholar 

  24. O. Omotoyinbo and A. Mogbodemu, “Some new Hermite–Hadamard integral inequalities for convex functions,” Int. J. Sci. Innov. Tech., 1, No. 1, 1–12 (2014).

    Google Scholar 

  25. M. E. Ö zdemir, S. S. Dragomir, and Č. Yildiz, “The Hadamard inequality for convex function via fractional integrals,” Acta Math. Sci. Ser. B (Engl. Ed.), 33, No. 5, 1293–1299 (2013).

  26. F. Qi and B. Y. Xi, “Some integral inequalities of Simpson type for GA−𝜀-convex functions,” Georgian Math. J., 20, No. 4, 775–788 (2013).

    Article  MathSciNet  Google Scholar 

  27. M. Z. Sarikaya and F. Ertuğral, On the Generalized Hermite–Hadamard Inequalities; https://www.researchgate.net/publication/321760443.

  28. M. Z. Sarikaya and H. Yildirim, “On generalization of the Riesz potential,” Indian J. Math. Math. Sci., 3, No. 2, 231–235 (2007).

    MathSciNet  MATH  Google Scholar 

  29. E. Set, M. A. Noor, M. U. Awan, and A. Gözpinar, “Generalized Hermite–Hadamard type inequalities involving fractional integral operators,” J. Inequal. Appl., Paper No. 169 (2017), 10 pp.

  30. H. Wang, T. S. Du, and Y. Zhang, “k-Fractional integral trapezium-like inequalities through (h,m)-convex and (𝛼,m)-convex mappings,” J. Inequal. Appl., 2017, Paper No. 311 (2017), 20 pp.

  31. R. Y. Xi and F. Qi, “Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means,” J. Funct. Spaces Appl., 2012, Art. ID 980438 (2012), 14 pp.

  32. X. M. Zhang, Y. M. Chu, and X. H. Zhang, “The Hermite–Hadamard type inequality of GA-convex functions and its applications,” J. Inequal. Appl., 2010, Art. ID 507560 (2010), 11 pp.

  33. Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, and A. Kashuri, “Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals,” J. Inequal. Appl., Paper No. 49 (2018), 30 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kashuri.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 9, pp. 1181–1204, September, 2021. Ukrainian DOI: 10.37863/umzh.v73i9.805.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashuri, A., Sarikaya, M.Z. Parameterized Inequalities of Different Types for Preinvex Functions with Respect to another Function via Generalized Fractional Integral Operators and their Applications. Ukr Math J 73, 1371–1397 (2022). https://doi.org/10.1007/s11253-022-02000-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02000-w

Navigation