Skip to main content

Advertisement

Log in

Effects of variations in water quantity and quality in the structure and functions of invertebrates’ community of a Mediterranean urban stream

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban streams provide important ecosystem services to cities’ population, from the maintenance of urban biodiversity, temperature, humidity and air quality to improving aesthetics and provision of natural areas for recreation. However, these streams are under multiple-stressors, including artificialization of the channel and flow, poor water quality and cut of riparian vegetation which puts in risk their ecological integrity and consequently their services. In this study, we aimed to understand variations in macroinvertebrate communities and in biological condition as a response to flow and water quality, by following a Mediterranean urban stream over 8 months (December–July). With a monthly periodicity, we sampled invertebrate communities and characterized in situ water physicochemical parameters. The urban stream studied showed a high variation of environmental factors over time. Invertebrate communities were generally poor, with some Ephemeroptera (Baetis sp.) but was dominated by Chironomidae and Oligochaeta that changed over time alongside with environmental conditions. Biological quality based on the Portuguese Invertebrates Index (IPtIS) varied between poor and bad. Multivariate community patterns (at genus level) showed variations in communities over time, as well as in their biological trait patterns (invertebrates’ maximal size, reproduction mode, resistance form, feeding habits and locomotion mode). Periods displaying worse biological quality, less diverse communities and lower functional richness corresponded to peaks of discharge, higher conductivity and hardness while the best quality communities were found under lower nitrate concentrations. Our study points out that the detection of impacts or recovery in urban streams through invertebrate communities might require at least the use of genus level as family level does not detect smoother changes. Communities reflect the complex interplay of environmental variables affecting structural and functional natural patterns and ultimately the biological condition of this urban stream. Rehabilitation measures should carefully consider this complex interplay of variables to enhance quality and ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alba-Tercedor J, Sánchez-Ortega A (1988) Un método rápido y simple para evaluar la calidad biológica de las águas corriente basado en el de Hellawell (1978). Limnetica 4:51–56

    Google Scholar 

  • Alberts JM, Fritz KM, Buffam I (2018) Response to basal resources by stream macroinvertebrates is shaped by watershed urbanization, riparian canopy cover, and season. Freshwater Science. 37:640–652

    PubMed  Google Scholar 

  • Álvarez-Cabria M, Barquím J, Juanes JA (2010) Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecol Ind. 10:370–379

    Google Scholar 

  • AMIIB@ (n.d.) Application for the computation of biological metrics and national indexes based on Stream Macroinvertebrate Communities, made available at: https://www.apambiente.pt/dqa/amiib@.html Accessed 20 July 2018

  • Andersen T, Cranston PS, Epler JH (eds.) (2013) Chironomidae of the Holartic Region. Keys and diagnoses, Larvae. Insect Systematics and Evolution, Supplement 66. Lund

  • Barnum TR, Wller DE, Williams M (2017) Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities. Ecol Indic. 27:2428–2442

    Google Scholar 

  • Benke AC (2001) Importance of flood regime to invertebrate habitat in an unregulated river-floodplain ecosystem. J N Am Benthol Soc. 20:225–240

    Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett. 12:1394–1404

    PubMed  Google Scholar 

  • Booth DB, Henshaw PC (2001) Rates of channel erosion in small urban streams. In: Wigmosta M, Burges S (eds) Land use and Watersheds Human influence on Hydrology and Geomorphology in urban and forested areas. Water Science and Application, American Geophysical Union Monograph series. 2:17–38

  • Booth DB, Roy AR, Smith B, Capps KA (2016) Global perspectives on the urban stream syndrome. Freshw Sci. 35:412–420

    Google Scholar 

  • Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat. 183:612–624

    PubMed  Google Scholar 

  • Calapez AR, Branco P, Santos JM, Ferreira T, Hein T, Brito AG, Feio MJ (2017) Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach. Sci Total Environ. 599–600:1202–1212

    PubMed  Google Scholar 

  • Calapez AR, Serra SRQ, Santos JM, Branco P, Ferreira T, Hein T, Brito AG, Feio MJ (2018) The effect of hypoxia and flow decrease in macroinvertebrate functional responses: A trait-based approach to multiple-stressors in mesocosms. Sci Total Environ. 637–638:647–656

    PubMed  Google Scholar 

  • Calapez AR, Elias CL, Almeida SFP, Brito AG, Feio MJ (2019) Sewage contamination under water scarcity effects on stream biota: biofilm, grazers and their interaction. Environ Sci Pollut R. https://doi.org/10.1007/s11356-019-05876-7

    CAS  PubMed  Google Scholar 

  • Calle-Martínez D, Casas JJ (2006) Chironomid species, stream classification, and water-quality assessment: the case of 2 Iberian Mediterranean mountain regions. J N Am Benthol Soc. 25:465–476

    Google Scholar 

  • Carew ME, Hoffmann AA (2015) Delineating closely related species with DNA barcodes for routine biological monitoring. Freshwater Biol. 60:1545–1560

    CAS  Google Scholar 

  • Casas JJ, Langton PH (2008) Chironomid species richness of a permanent and a temporary Mediterranean stream: a long-term comparative study. J N Am Benthol Soc. 27:746–759

    Google Scholar 

  • Čerba D, Mihaljević Z, Vidaković J (2011) Colonisation trends, community and trophic structure of chironomid larvae (Chironomidae: Diptera) in a temporal phytophylous assemblage. Fund Appl Limnol. 179:203–214

    Google Scholar 

  • Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol. 31:295–309

    Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ. 9:222–228

    Google Scholar 

  • Cooper SD, Lake PS, Sabater S, Melack JM, Sabo JL (2013) The effects of land use changes on streams and rivers in Mediterranean climates. Hydrobiologia 719:383–425

    CAS  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactions and cumulative impacts of multiple stressors in marine ecosystems. Ecol Lett. 11:1304–1315

    PubMed  Google Scholar 

  • Cranston PS (1982) A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwater Biological Associations Scientific Publication n°45, Ambleside

    Google Scholar 

  • Dodds WK (2006) Eutrophication and trophic state in rivers and streams. Limnol Oceanogr. 51:671–680

    CAS  Google Scholar 

  • EEA (2016) Rivers and lakes in European cities. Past and future challenges. European Environmental Agency Report.:26/2016

  • Elmqvist T, Setälä H, Handel SN, van der Ploeg S, Aronson J, Blignaut JN, Gómez-Baggethun E, Nowak DJ, Kronenberg J, de Groot R (2015) Benefits of restoring ecosystem services in urban areas. Curr Opin Env Sust. 14:101–108

    Google Scholar 

  • Everard M, Moggridge HL (2011) Rediscovering the value of urban rivers. Urban Ecosyst. 15:293–314

    Google Scholar 

  • Feio MJ, Dolédec S, Graça MAS (2015a) Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environ Pollut. 196:300–308

    CAS  PubMed  Google Scholar 

  • Feio MJ, Ferreira WR, Macedo DR, Eller AP, Alves CBM, França JS, Callisto M (2015b) Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions. River Res Appl. 31:70–84

    Google Scholar 

  • Ferreira J, Bernardo JM, Alves MH (2008) Exercício de Intercalibração em rios no âmbito da Directiva Quadro da Água. 9° Congresso da Água: desafios de hoje, exigências de amanhã. Associação Portuguesa de Recursos Hídricos. Estoril

  • Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst. 30:51–81

    Google Scholar 

  • Gurnell A, Lee M, Souch C (2007) Urban Rivers: Hydrology, Geomorphology, Ecology and Opportunities for Change. Geogr Compass. 1(5):1118–1137

    Google Scholar 

  • Hawkins CP, Norris RH (2000) Effects of taxonomic resolution and use of subsets of fauna on the performance of RIVPACS-type models. In: Wright JF, Sutcliffe DW, Furse MT (eds) Assessing the biological quality of freshwaters RIVPACS and other techniques, Freshwater Biological Association, Ambleside, pp 217–228

  • Helms BS, Schoonover JE, Feminella JW (2009) Seasonal variability of landuse impacts on macroinvertebrate assemblages in streams of western Georgia, USA. J N Am Benthol Soc. 28:991–1006

    Google Scholar 

  • INAG (2008) Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a directiva quadro da água. Protocolo de amostragem e análise para os macroinvertebrados bentónicos. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional, Instituto da Água, I. P. Portugal

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) . Cambridge University Press, Cambridge and New York

    Google Scholar 

  • IPCC AR5 (2014) Fifth Assessment Report. Technical Summary THE.7 Carbon Cycle Perturbation and Uncertainties

  • Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob Chang Biol. 22:180–189

    PubMed  Google Scholar 

  • Jones EL, Leather SR (2012) Invertebrates in urban areas: A review. Eur. J. Entomol. 109:463–478

    Google Scholar 

  • Kaushal SS, Likens GE, Jaworski NA, Pace ML, Sides M, Seekell D, Belt KT, Secor DH, Wingate RL (2010) Rising stream and river temperatures in the United States. Front Ecol Environ. 8:461–466

    Google Scholar 

  • King RS, Richardson CJ (2002) Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. J N Am Benthol Soc. 21:150–171

    Google Scholar 

  • Konrad CP, Booth DB (2005) Hydrologic Changes in Urban Streams and Their Ecological Significance. Am Fish S S. 47:157–177

    Google Scholar 

  • Kuzmanovic M, Dolédec S, de Castro-Catalad N, Ginebreda A, Sabater S, Muñoz I, Barceló D (2017) Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environ Res. 156:485–493

    CAS  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology. 91:299–305

    PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1:0–12

    Google Scholar 

  • Larson ER, Magoulick DD, Turner C, Laycock KH (2009) Disturbance and species displacement: different tolerances to stream drying and desiccation in a native and an invasive crayfish. Freshwater Biol. 54:1899–1908

    Google Scholar 

  • Ledford SH, Lautz LK, Vidon PG, Stella JC (2017) Impact of seasonal changes in stream metabolism on nitrate concentrations in an urban stream. Biogeochemistry. 133:317–331

    CAS  Google Scholar 

  • Lencioni V, Marziali L, Rossaro B (2007) I Ditteri Chironomidi. Morfologia, tassonomia, ecologia, fisiologia e zoogeografia. Quaderni del Museu Tridentino di Scienze Naturali, 1. Museo Tridentino di Scienze Naturali, Trento

    Google Scholar 

  • Lencioni V, Marziali L, Rossaro B (2012) Chironomids as bioindicators of environmental quality in mountain springs. Freshw Sci. 31:525–541

    Google Scholar 

  • Lepori F, Palm D, Brannas E, Malmqvist B (2005) Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol Appl. 15:2060–2071

    Google Scholar 

  • Lepori F, Gaul D, Palm D, Malmqvist B (2006) Food-web responses to restoration of channel heterogeneity in boreal streams. Can. J. Fish. Aquat. Sci. 63:2478–2486

    CAS  Google Scholar 

  • Louhi P, Mykrä H, Paavola R, Huusko A, Vehanen T, Mäki-Petäys A, Muotka T (2011) Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities. Ecol Appl. 21:1950–1961

    PubMed  Google Scholar 

  • Marques PS, Manna LR, Mazzoni R, El-Sabaawi R (2019) Intraspecific trait variation in urban stream ecosystems: toward understanding the mechanisms shaping urban stream communities. Freshwater Sci. 38:1–11

    Google Scholar 

  • Marziali L, Rossaro B (2013) Response of chironomid species (Diptera, Chironomidae) to water temperature: effects on species distribution in specific habitats. J Entomol Acarol Res. 45:73–89

    Google Scholar 

  • Marziali L, Armanini DG, Cazzola M, Erba S, Toppi E, Buffagni A, Rossaro B (2010) Responses of chironomid larvae (Insecta Diptera) to ecological quality in mediterranean river mesohabitats (South Italy). River Res Appl. 26:1036–1051

    Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos. 111:112–118

    Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv. 127:247–260

    Google Scholar 

  • Milošević D, Mančev D, Čerba D, Piperac MS, Popović N, Atanacković A, Đuknić J, Simić V, Paunović M (2018) The potential of chironomid larvae-based metrics in the bioassessment of non-wadeable rivers. Sci Total Environ. 616–617:472–479

    PubMed  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol. 24:867–876

    Google Scholar 

  • Musolff A, Leschik S, Reinstorf F, Strauch G, Schirmer M (2010) Micropollutant loads in the urban water cycle. Environ Sci Technol 44:4877–4883

    CAS  PubMed  Google Scholar 

  • Nakano D, Nakamura F (2006) Response of macroinvertebrate communities to river restoration in a channelized segment of the Shibetsu River, Nothern Japan. River Res. Applic. 22:681–689

    Google Scholar 

  • Ogden FL, Pradhan NR, Downer CW, Zahner JA (2011) Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour Res. 47:W12503

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2:4–6

    Google Scholar 

  • Orendt C (2018) Results of 10 years sampling of Chironomidae from German lowland running waters differing in degradation. J Limnol. 77:169–176

    Google Scholar 

  • Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Shah JF, Galat DL, Loss G, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O’Donnell TK, Pagano L, Sudduth E (2005) Standards for ecologically successful river restoration. J Appl Ecol. 42:208–217

    Google Scholar 

  • Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biol. 55:205–222

    Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the Urban Landscape. Annu. Rev. Ecol. Syste. 32:333–365

    Google Scholar 

  • Petrovic M, Ginebreda A, Acuña V, Batalla RJ, Elosegi A, Guasch H, de Alda ML, Marcé R, Muñoz I, Navarro-Ortega A (2011) Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. TrAC Trends Anal Chem 30:1269–1278

    CAS  Google Scholar 

  • Poff NL, Allan JD (1995) Functional organization of stream fish assembleges in relation to hydrological variability. Ecology. 76:606–627

    Google Scholar 

  • Prat N, Rieradevall M (2014). Guia para el reconocimiento de las larvas de Chironomidae (DIPTERA) de los ríos mediterráneos. Version 1. URL: http://hdl.handle.net/2445/60584 (last accessed June 2019)

  • Prather CM, Pelini SL, Laws A, Rivest E, Woltz M, Bloch CP, Del Toro I, Ho C-K, Kominoski J, Newbold TAS, Parsons S, Joern A (2013) Invertebrates, ecosystem servivices and climate change. Bio Rev. 88:327–348

    Google Scholar 

  • Program ADAPT (2015). Climate Change in Portugal ‘Alterações Climáticas em Portugal’. Instituto Português do Mar e da Atmosfera. URL: http://portaldoclima.pt/pt/ (last accessed June 2019)

  • Pyne MI, Poff NL (2017) Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Glob Change Biol. 23:77–93

    Google Scholar 

  • R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

  • Rabeni CF, Wang N (2001) Bioassessment of streams using macroinvertebrates: are the Chironomidae necessary? Environ Monit Assess. 71:177–185

    CAS  PubMed  Google Scholar 

  • Raunio J, Heino J, Paasivirta L (2011) Non-biting midges in biodiversity conservation and’environmental assessment: Findings from boreal freshwater ecosystems. Ecol Indic. 11:1057–1064

    Google Scholar 

  • Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J Paleolimnol. 25:81–99

    Google Scholar 

  • Rosa BJFV, Rodrigues LFT, de Oliveira GS, da Gama Alves R (2014) Chironomidae and Oligochaeta for water quality evaluation in an urban river in southeastern Brazil. Environ Monit Assess. 186:7771–7779

    CAS  PubMed  Google Scholar 

  • Sabater S, Elosegi A, Ludwig R (2019) Defining Multiple Stressor Implications. In: Sabater S, Elosegi A, Ludwig R (eds) Multiple Stressors in River Ecosystems. Status, Impacts and Prospects, pp 1–22

    Google Scholar 

  • Sánchez-Morales M, Sabater F, Muñoz I (2018) Effects of urban wastewater on hyporheic habitat and invertebrates in Mediterranean streams. Sci Total Environ. 642:937–945

    PubMed  Google Scholar 

  • Selvakumar A, O’Connor TP, Struck SD (2010) Role of Stream Restoration on Improving Benthic Macroinvertebrates and In-Stream Water Quality in an Urban Watershed: Case Study. J Environ Eng. 136:127–139

    CAS  Google Scholar 

  • Serra SRQ, Cobo F, Graca MAS, Doledec S, Feio MJ (2016) Synthesising the trait information of European Chironomidae (Insecta: Diptera): Towards a new database. Ecol Indic. 61:282–292

    Google Scholar 

  • Serra SRQ, Graça MAS, Dolédec S, Feio MJ (2017) Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environ Monit Assess. 189:326

    PubMed  Google Scholar 

  • Solecki W, Marcotullio PJ (2013) Climate change and urban biodiversity vulnerability. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, RI MD, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer, Netherlands, pp 485–504

    Google Scholar 

  • Sundermann A, Antons C, Cron N, Lorenz AW, Hering D, Haase P (2011) Hydromorphological restoration of running waters: effects on benthic invertebrate assemblages. 56:1689–1702

  • Suren AM, McMurtrie S (2005) Assessing the effectiveness of enhancement activities in urban streams: II. Responses of invertebrate communities. River Res Appl. 21:439–453

    Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce, Nouvelle Edition. Centre National de la Recherche Scientifique Press, Paris

    Google Scholar 

  • Verberk WCEP, van der Velde G, Esselink H (2010) Explaining abundance–occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. J Anim Ecol. 79:589–601

    PubMed  Google Scholar 

  • Vermonden K, Leuven RSEW, van der Velde G, van Katwijk MM, Roelofs JGM, Hendriks AJ (2009) Urban drainage systems: An undervalued habitat for aquatic macroinvertebrates. Biol Conserv. 142:1105–1115

    Google Scholar 

  • Vietz GJ, Hawley RJ. (2019) Protecting and Managing Stream Morphology in Urban Catchments Using WSUD. In: Sharma AK, Gardner T, Begbie D (eds) Approaches to Water Sensitive Urban Design Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions. Chapter 12. pp:249–267

    Google Scholar 

  • Villéger S, Mason WN, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 89:2290–2301

    PubMed  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature. 467:555–561

    PubMed  Google Scholar 

  • Walsh CJ, Sharpe AK, Breen PF, Sonneman JA (2001) Effects of urbanization on streams of the Melbourne region, Victoria, Australia. I. Benthic macroinvertebrate communities. Freshwater Biol. 46:535–551

    CAS  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP II (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc. 24:706–723

    Google Scholar 

  • Wenger SJ, Roy AH, Jackson CR, Bernhardt ES, Carter TL, Filoso S, Gibson CA, Hession WC, Kaushal SS, Mart E, Meyer JL, Palmer MA, Paul MJ, Purcell AH, Ramírez A, Rosemond AD, Schofield KA, Sudduth EB, Walsh CJ (2009) Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. J N Am Benthol Soc. 28:1080–1098

    Google Scholar 

  • White JC, Hannah DM, House A, Beatson SJV, Martin A, Wood PJ (2017a) Macroinvertebrate responses to flow and stream temperature variability across regulated and non-regulated rivers. Ecohydrology. 10:e1773

    Google Scholar 

  • White JC, Hill MJ, Bickerton MA, Wood PJ (2017b) Macroinvertebrate Taxonomic and Functional Trait Compositions within Lotic Habitats Affected By River Restoration Practices. Environ Manage. 60:513–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  • Wymer DA, Cook SB (2003) Effects of Chironomidae (Diptera) taxonomic resolution on multivariate analyses of aquatic insect communities. J Freshw Ecol. 18:179–186

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for financial support through: the strategic project UID/MAR/04292/2013 granted to MARE; and the grant from FLUVIO PhD programme (PD\BD\52510\2014) attributed to Ana Raquel Calapez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia R. Q. Serra.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, S.R.Q., Calapez, A.R., Simões, N.E. et al. Effects of variations in water quantity and quality in the structure and functions of invertebrates’ community of a Mediterranean urban stream. Urban Ecosyst 22, 1173–1186 (2019). https://doi.org/10.1007/s11252-019-00892-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-019-00892-4

Keywords

Navigation