Skip to main content
Log in

Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

In habitats disturbed by anthropogenic noise, acoustically communicating species may develop behavioral responses that help them transmit information and overcome signal masking. We studied four anuran species breeding in wetlands, ponds, and ditches near a highway in eastern Ontario, Canada, to test whether they called more often when traffic noise intensity was lower, and stopped calling when the noise intensity increased (i.e., gap calling behavior). We made call recordings between April and July 2011, and compared the traffic noise intensity (sound pressure level) between times when the anurans were calling and times when they were not calling. We found that the two species with the highest call peak frequency (American toad, gray treefrog) called randomly with regard to traffic noise intensity. In contrast, the two species with the lowest call peak frequency (green frog, bullfrog) called more often when traffic noise intensity was low. The behavioral response in the two latter species likely represents a short-term strategy that enhances their signal-to-noise ratio thereby increasing the chance of effective communication. Our results support predictions derived from the acoustic adaptation hypothesis: low-frequency signals are more prone to be masked by anthropogenic noise and therefore require behavioral adjustments (in this study gap-calling behavior) to ameliorate this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776

    Article  Google Scholar 

  • Both C, Grant T (2012) Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol Lett 8:714–716

    Article  PubMed Central  PubMed  Google Scholar 

  • Brumm H (2006) Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. J Comp Physiol A 192:1279–1285

    Article  Google Scholar 

  • Brumm, H. (2013) Animal communication and noise. Springer Berlin Heidelberg

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Article  Google Scholar 

  • Cade WH, Otte D (1982) Alternation calling and spacing patterns in the field cricket Acanthogryllus fortipes (Orthoptera; Gryllidae). Can J Zool 60:2916–2920

    Article  Google Scholar 

  • Cartwright LA, Taylor DR, Wilson DR, Chow-Fraser P (2013) Urban noise affects song structure and daily patterns of song production in Red-winged Blackbirds (Agelaius phoeniceus). Urban Ecosyst. doi:10.1007/s11252-013-0316-z

    Google Scholar 

  • Cocroft RB, Ryan MJ (1995) Patterns of advertisement call evolution in toads and chorus frogs. Anim Behav 49:283–303

    Article  Google Scholar 

  • Cunnington GM, Fahrig L (2010) Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecol 36:463–470

    Article  Google Scholar 

  • Cunnington GM, Fahrig L (2013) Mate attraction by male anurans in the presence of traffic noise. Anim Conserv 16:275–285

    Article  Google Scholar 

  • Douglas HD, Conner WE (1999) Is there a sound reception window in coastal environments? Evidence from shorebird communication systems. Naturwissenschaften 86:228–230

    Article  CAS  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2008) Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landsc Ecol 23:159–168

    Article  Google Scholar 

  • Ficken RW, Ficken MS, Hailman JP (1974) Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183:762–763

    Article  CAS  PubMed  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011a) Noise pollution filters bird communities based on vocal frequency. PLoS ONE 6:1–8

    Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011b) Vocal frequency change reflects different responses to anthropogenic noise in two suboscine tyrant flycatchers. P Roy Soc B 278:2025–2031

    Article  Google Scholar 

  • Fuller RA, Warren PH, Gaston KJ (2007) Daytime noise predicts nocturnal singing in urban robins. Biol Lett 3:368–370

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Gerhardt HC, Klump GM (1988) Masking of acoustic signal by the chorus background noise in the green Treefrog: a limitation for female choice. Anim Behav 36:1247–1249

    Article  Google Scholar 

  • Grafe TU (1996) The function of call alternation in the African reed frog (Hyperolius marmoratus): precise call timing prevents auditory masking. Behav Ecol Sociobiol 38:149–158

    Article  Google Scholar 

  • Halliday T, Tejedo M (1995) Intrasexual selection and alternative mating behaviour. In: Amphibian biology, Vol. 2. Social behaviour, pp. 419–468. Australia: Surrey Beatty and Sons

  • Harding JH (1997) Reptiles and Amphibians of the Great Lakes Region. University of Michigan, USA

    Google Scholar 

  • Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification task by gray treefrogs. Hear Res 2012:86–97

    Article  Google Scholar 

  • Ortega CP (2012) Effects of noise pollution on birds: a brief review of our knowledge. Ornithol Monog 2012:6–22

    Google Scholar 

  • Popp JW, Ficken R, Reinartz J (1985) Short-term temporal avoidance of interespecific acoustic interference among forest birds. Auk 102:744–748

    Google Scholar 

  • Program BR (2011) Raven Pro: Interactive Sound Analysis Software (Version 1.4) [Computer software]. The Cornell Lab of Ornithology, Ithaca, NY, Available from http://www.birds.cornell.edu/raven

    Google Scholar 

  • Rabin AL, McCowan B, Hooper SL, Owings DH (2003) Anthropogenic noise and its effect on animal communication: an interface between comparative psychology and conservation biology. Int J Comp Psychol 16:172–192

    Google Scholar 

  • Römer, H. (2013) Masking by noise in acoustic insects: problems and solutions. In: Animal communication and noise, p. 33–63. Brumm, H., Ed., Berlin Heidelberg, Springer

  • Roy S, Miller CT, Gottsch D, Wang X (2011) Vocal control by the common marmoset in the presence of interfering noise. J Exp Biol 214:3619–3629

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryan MJ (1985) The tungara frog, a study in sexual selection and communication. University of Chicago Press, Chicago

    Google Scholar 

  • Schaefer HM, Ruxton DG (2011) Plant-Animal Communication. Oxford University Press, New York

    Google Scholar 

  • Schwartz JJ (1987) The function of call alternation in anuran amphibians: a test of three hypotheses. Evolution 41:461–471

    Article  Google Scholar 

  • Sismondo E (1990) Synchronous, alternating, and phase-locked stridulation by a tropical katydid. Science 249:55–58

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267–267

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25:419–427

    Article  PubMed  Google Scholar 

  • Smith AM, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–28

    Article  Google Scholar 

  • Summers PD, Cunnington GM, Fahrig L (2011) Are the negative effects of roads on breeding birds caused by traffic noise? J Appl Ecol 2011:1527–1534

    Article  Google Scholar 

  • Sun JWC, Narins PM (2005) Anthropogenic sounds differentially affect amphibian call rate. Biol Conserv 121:419–427

    Article  Google Scholar 

  • Szekely T, Moore AJ, Komdeur J (2010) Social Behaviour. Genes, Ecology and Evolution. New York: Cambridge University Press

  • Vargas-Salinas F, Amézquita A (2013) Traffic noise correlates with calling time but not spatial distribution in the threatened poison frog Andinobates bombetes. Behaviour 150:569–584

    Article  Google Scholar 

  • Wells KD (2007) Ecology and behavior of amphibians. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Wong S, Parada H, Narins PM (2009) Heterospecific acoustic interference: effects on calling in the frog Oophaga pumilio in Nicaragua. Biotropica 41:74–80

    Article  PubMed Central  PubMed  Google Scholar 

  • Zelick RD, Narins PM (1982) Analysis of acoustically evoked call suppression behaviour in a Neotropical Treefrog. Anim Behav 30:728–733

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología “Francisco José de Caldas” COLCIENCIAS for supporting the international internship and doctoral studies of FVS. This research was also funded by Natural Sciences and Engineering Research Council of Canada and Canada Foundation for Innovation grants to L. Fahrig. Thanks to S. Duran, W. Shim and S. Feagan for their field work assistance and to O. Cortez, F. Lamadrid, J. Mendez, J. Goyes, O.L. Torres-Suarez, J. Molina, P. Narins and two anonymous reviewers for commentaries on preliminary versions of this manuscript. We gratefully acknowledge the crew of the Geomatics and Lanscape Ecology Research Laboratory GLEL at Carleton University for all the logistic support, and landowners in the study area for allowing call recordings in ponds located on their properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vargas-Salinas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Salinas, F., Cunnington, G.M., Amézquita, A. et al. Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. Urban Ecosyst 17, 945–953 (2014). https://doi.org/10.1007/s11252-014-0374-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-014-0374-z

Keywords

Navigation