Skip to main content

Advertisement

Log in

Nutritional effects and feeding behavior in ewes fed with biscuit bran and cashew nut bran, with different energy levels

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

This research evaluated the effects of biscuit bran and cashew nut bran as energy source and additional energy level on intake, digestibility, feeding behavior, energy partitioning, N balance, and blood parameters on ewes. Twenty Morada Nova cull ewes breed (average age of 3 years old and initial body weight of 30.1 ± 3.56 kg) were distributed in a completely randomized design in a 2 × 2 factorial scheme of two energy sources (biscuit bran vs. cashew nut bran) and two levels of energy above 10% and 25% of the recommended energy requirements. The inclusion of cashew nut bran above 10% of the recommended energy promoted a lower crude protein (CP) and ethereal extract intake (P < 0.01) than cashew nut bran above 25% of the recommended energy. The interaction between energy source × energy level did not affect digestibility and energy partition on ewes (P > 0.05). The diet containing cashew nut bran above 10% of the recommended energy presented lower metabolizable energy intake and energy balance (P < 0.05). Regarding N balance, the cashew nut bran diet above 10% of the recommended energy decreased Nintake (P = 0.01), Nabsorbed (P < 0.01), and Nbalance (P = 0.04). Partial replacement of corn with the byproduct biscuit bran or cashew nut bran is a possible nutritional strategy. Ewes fed with 210 g/kg of biscuit bran presented greater CP intake and improvement of the protein use with the reduction of plasma levels of urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • ABIMAPI 2018. Associação Brasileira das Indústrias de Biscoitos, Massas Alimentícias e Pães & Bolos Industrializados. Estatística sobre a produção de biscoito. Retrieved on 30 March 2020, from https://www.abimapi.com.br/estatistica-biscoitos.php#.

  • AOAC, 1990. Official Methods of Analysis of AOAC International. Association of Official Analysis Chemists International 15, CD-ROM.

  • Brito, D.B., Carvalho Rocha, V., Alves Cutrim Júnior, J., Praseres Chaves, D., Silva, E., Paiva Coelho, A., Soares, E., Marques da Silva, E., Silva, I. 2016. Profile biochemical sheep fed levels of inclusion of wet brewery residue. Revista Brasileira de Higiene e Sanidade Animal, 10, 572–586.

    Article  Google Scholar 

  • Bürger, P.J., Pereira, J.C., Queiroz, A.C., Coelho da Silva, J.F., Valadares Filho, S.C., Cecon, P.R., Casali, A.D.P. 2000. Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Revista Brasileira de Zootecnia, 29(1), 236–242.

    Article  Google Scholar 

  • Decandia, M., Sitzia, M., Cabiddu, A., Kababya, D., Molle, G. 2000. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Ruminant Research, 38, 157–164.

    Article  Google Scholar 

  • FAO. 2017. FAO: 30% de toda a comida produzida no mundo vai parar no lixo | ONU Brasil. Sustentable Developments. Retrieved on 11 February 2020, from https://nacoesunidas.org/fao-30-de-toda-a-comida-produzida-no-mundo-vai-parar-no-lixo/.

  • García-Rodríguez, J., Ranilla, M.J., France, J., Alaiz-Moretón, H., Carro, M.D., López, S. 2019. Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals 9, 861.

    Article  Google Scholar 

  • Gleason C.B., Settlage, R.E., Beckett, L.M and White R.R. 2021 Characterizing Effects of Ingredients Differing in Ruminally Degradable Protein and Fiber Supplies on the Ovine Rumen Microbiome Using Next-Generation Sequencing. Frontiers in Animal Science, 2:745848.

    Article  Google Scholar 

  • Gómez, L.M., Posada, S.L., Olivera, M. 2016. Starch in ruminant diets: A review. Revista Colombiana de Ciencias Pecuarias, 29, 77–90.

    Article  Google Scholar 

  • Gonzalez, F.H.D., Silva, S.C. 2017. Introdução à bioquímica clínica veterinária. Editora da Universidade Federal UFRGS, Porto Alegre - RS.

    Google Scholar 

  • Guarnido-Lopez, P., Ortigues-Marty, I., Salis, L., Chantelauze, C., Agathe Bes, A., Pierre Nozière, P., Cantalapiedra-Hijar, G. 2022. Protein metabolism, body composition and oxygen consumption in young bulls divergent in residual feed intake offered two contrasting forage-based diets. Animal, 16, 1-12.

    Article  Google Scholar 

  • Hall, M.B. Mertens, D.R. 2017. A 100-Year Review: Carbohydrates—Characterization, digestion, and utilization. Journal of Dairy Science, 100, 10078–10093.

    Article  CAS  Google Scholar 

  • Hristov, A.N., Bannink, A., Crompton, L.A., Huhtanen, P., Kreuzer, M., Nozière, P., Reynolds, C.K., Bayat, A.R., Yáñez-Ruiz, D.R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K.J., Yu, Z.Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques, Journal of Dairy Science, 102, 5811-5852.

    Article  CAS  Google Scholar 

  • Johnson, T.R., Combs, D.K. 1991. Effects of Prepartum Diet, Inert Rumen Bulk, and Dietary Polyethylene Glycol on Dry Matter Intake of Lactating Dairy Cows. Journal of Dairy Science, 74, 933–944.

    Article  CAS  Google Scholar 

  • Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikäinen, J., Saikku, L., Schösler, H. 2016. Transition towards circular economy in the food system. Sustainability (Switzerland), 8, 1–14.

    Google Scholar 

  • Koné, G.A., Good, M., Kouba, M. 2019. Performance of guinea fowl fed hevea seed meal or cashew nut meal as a partial substitute for soya bean meal. Animal, 14, 206 - 214.

    Article  Google Scholar 

  • Lascano, C. 1992. Recommendations on the methodology for measuring consumption and in vivo digestibility. In Ruminant nutrition research: methodological guidelines (ed. S.E. Ruíz, M.E.; Ruíz), pp. 173–182. Research and Development Collection (IICA), IICA San Jose, Costa Rica.

  • Licitra, G., Hernandez, T.M., Van Soest, P.J. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57, 347–358.

    Article  Google Scholar 

  • Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R. 2013. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6, 426–464.

    Article  CAS  Google Scholar 

  • Lopes, A.S.M., Oliveira, J.S., Santos, E.M., Medeiros, A.N., Givisiez, P.E.N., Lemos, M.L.P. Santos, F.N.S., Silva, N.M.V., Azevedo, P.S., Sousa, L.S., Pereira, D.M. and Oliveira, C.J.B. 2021. Goats fed with non-protein nitrogen: ruminal bacterial community and ruminal fermentation, intake, digestibility and nitrogen balance. The Journal of Agricultural Science, 1–10.

  • Mertens, D.R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85, 1217–40.

    CAS  Google Scholar 

  • Mertens, D.R. 2003. Challenges in measuring insoluble dietary fiber The online version of this article , along with updated information and services , is located on the World Wide Web at : Challenges in measuring insoluble dietary fiber. Journal of Animal Science, 81, 3233–3249.

    Article  CAS  Google Scholar 

  • Moraes, K.S., Zavareza, E., Miranda, M.Z., Salas-Mellado, M. 2010. Technological evaluation of cookies with lipid and sugar content variations. Ciência e Tecnologia de Alimentos, 30, 233–242.

    Article  Google Scholar 

  • NRC. 2001. Nutrient Requirements of Dairy Cattle. National Academies Press, Washington, D.C.

    Google Scholar 

  • NRC. 2007. Nutrient Requirements of Small Ruminants. Sheep, Goats, Cervids, and New World Camelids. Washington DC.

  • Oliveira, R.P.M., Maduro, A.H.P., Lima, E.S., Oliveira, F.F. 2014. Perfil metabólico de ovelhas Santa Inês em diferentes fases de gestação criadas em sistema semi-intensivo no estado do Amazonas. Ciência Animal Brasileira, 15, 81–86.

    Article  Google Scholar 

  • Pereira, E.S., Mizubuti, I.Y., Oliveira, R.L., Pinto, A.P., Ribeiro, E.L.A., Gadelha, C.R.F., Campos, A.C.N., Pereira, M.F., Carneiro, M.S.S., Arruda, P.C., Silva, L.P. 2016. Supplementation with cashew nut and cottonseed meal to modify fatty acid content in lamb meat. Journal of food science, 81, C2143–C2148.

    Article  CAS  Google Scholar 

  • Pimentel, P,G., Pereira, E.S., Queiroz, A.C., Mizubuti, I.Y., Regadas Filho, J.G.L., Maia, I.S.G. 2011. Intake, apparent nutrient digestibility and ingestive behavior of sheep fed cashew nut meal. Revista Brasileira de Zootecnia, 40, 1128–1133.

    Article  Google Scholar 

  • Pu, X., Guo, X., Shahzad, K., Wang, M., Jiang, C., Liu, J., Zhang, X., Zhang, S., Cheng, L. 2020. Effects of Dietary Non-Fibrous Carbohydrate (NFC) to Neutral Detergent Fiber (NDF) Ratio Change on Rumen Bacteria in Sheep Based on Three Generations of Full-Length Amplifiers Sequencing. Animals, 10, 192.

    Article  Google Scholar 

  • Salfer, I., Morelli, M., Ying, Y., Allen, M., Harvatine, K. 2018. The effects of source and concentration of dietary fiber, starch, and fatty acids on the daily patterns of feed intake, rumination, and rumen pH in dairy cows. Journal of Dairy Science, 101, 10911–10921.

    Article  CAS  Google Scholar 

  • Sniffen, C.J., O’Connor, J.D., Van Soest, P.J., Fox, D.G.,Russell, J.B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70, 3562–3577.

    Article  CAS  Google Scholar 

  • Van Soest, P.J., Robertson, J.B.,Lewis, B.A. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

  • Vasconcelos-Filho, P.T., Costa, H.H.A., Vega, W.H.O., Sousa, L.C.O., Parente, M.O.M., Landim, A.V. 2021. Effects of dietary energy content and source using by-products on carcass and meat quality traits of cull ewes. Animal, 15, 100035.

    Article  Google Scholar 

  • Wang, Q., Wang, Y., Hussain, T., Dai, C., Li, J., Huang, P., Li, Y., Ding, X., Huang, J., Ji, F., Zhou, H., Yang, H. 2020. Effects of dietary energy level on growth performance, blood parameters and meat quality in fattening male Hu lambs. Journal of Animal Physiology and Animal Nutrition, 104, 418–430.

    Article  CAS  Google Scholar 

  • Weiss, W.P. 1993. Predicting Energy Values of Feeds. Journal of Dairy Science, 76, 1802–1811.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the State University of Vale do Acaraú for all technical support, facilities, and infrastructure.

Funding

This research was funded by the Cearense Foundation for Scientific and Technological Development Support (FUNCAP), Project DCR-0024–02069.01.00/16. The Regional Scientific Development STClarship contract to H. H. A. Costa was supported by a grant by the National Scientific and Technological Development Council (CNPq). The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES), for the sTClarship to the second author, and to the Coelho Ltd. and Resibras Ltd. companies, for donating the biscuit bran and cashew nut bran for the accomplishment of this research. The supporting agencies and companies participated neither in the study’s design, data collection, and analysis nor in the decision-making for preparation or publication of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H. H. A. Costa, conceptualization, methodology, funding acquisition, project administration, writing — original draft, and final review. P. T. Vasconcelos-Filho, data collection and data analysis. M. O. M. Parente and F. N. S. S, final review. E. O. S. Saliba, final review. A. P. Souza, writing and editing and final review. A. V. Landim, supervision, methodology, funding acquisition, data curation, and data analysis. A. C. Costa, data collection.

Corresponding author

Correspondence to Francisco Naysson de Sousa Santos.

Ethics declarations

Ethics approval

The experimental procedures were approved by the Animal Use Ethics Committee — CEUA/UVA, protocol number: 006.09.015.UVA.504.02.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, H.H.A., de Tasso Vasconcelos Filho, P., de Oliveira Maia Parente, M. et al. Nutritional effects and feeding behavior in ewes fed with biscuit bran and cashew nut bran, with different energy levels. Trop Anim Health Prod 54, 374 (2022). https://doi.org/10.1007/s11250-022-03372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03372-8

Keywords

Navigation