Skip to main content
Log in

Effects of concentrate levels and pineapple stem on growth performance, carcass and meat quality of dairy steers

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The objective of this study was to determine a suitable level of concentrate using pineapple stem by-product as a roughage source for the growth performance, carcass traits and meat quality of Holstein steer. Forty Holstein steers with an average initial body weight of 404.2 ± 38.2 kg (18 months of age) were used in a completely randomised design. The treatments consisted of four levels of restricted concentrate (4, 5, 6 and 7 kg/head/day as fed basis), and the animals were fed ad libitum pineapple stem by-product as a roughage source. The data were analysed by using orthogonal polynomial contrasts of trend response, represented by the linear and quadratic effects of the concentrate levels. Total dry matter intake (DMI) increased with increasing concentrate levels and was the highest in the dairy steer fed 6 kg/head/day (P < 0.05). Pineapple stem by-product intake was decreased by 5.51, 4.70, 4.04 and 2.59 kg DM/day with increasing concentrate levels, and the linear effect was significant (P < 0.01). Ruminal pH decreased with increasing concentrate levels (6.54, 6.46, 6.12 and 6.00), and the linear effect was significant (P < 0.01). The overall carcass characteristics were not affected by the treatments. The steers fed 4 kg/head/day of the concentrate presented the lowest feed cost per gain. These results indicated that pineapple stem by-product is suitable for use as a roughage source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AOAC International. 2016. Official Methods of Analysis of AOAC International. 20th ed. Assoc. Off. Anal. Chem., Rockville, MD.

    Google Scholar 

  • Boonsaen, P., N. W. Soe, W. Maitreejet, S. Majarune, T. Reungprim, & S. Sawanon. 2017. Effects of protein levels and energy sources in total mixed ration on feedlot performance and carcass quality of Kamphaeng Saen steers. Agric. Nat. Res. 51: 57–61.

    Google Scholar 

  • Cacere, R. A. S., M. G. Morais, F. V. Alves, G. L. D. Feijó, C. C. B. F. Ítavo, L. C. V. Ítavo, L. B. Oliveira, & C. B. Ribeiro. 2014. Quantitative and qualitative carcass characteristics of feedlot ewes subjected to increasing levels of concentrate in the diet. Arq. Bras. Med. Vet. Zootec. 66: 1601–1610.

    Article  Google Scholar 

  • Da Silva, G. S., A. S. C. Veras, M. D. A. Ferreira, W. J. M. Dutra, M. L. M. W. Neves, E. J. O. Souza, F. F. R. D. Carvalho, & D. M. De Lima, Jr. 2015. Performance and carcass yield of crossbred dairy steers fed diets with different levels of concentrate. Trop. Anim. Health Prod. 47: 1307–1312.

    Article  Google Scholar 

  • Destefanis, G., A. Brugiapaglia, M. T. Barge, & E. D. Molin. 2008. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 78: 153–156.

    Article  CAS  Google Scholar 

  • Duff, G. C., & C. P. McMurphy. 2007. Feeding Holstein steers from start to finish. Vet. Clin. North Am. Food Anim. Pract. 23: 281–297.

    Article  Google Scholar 

  • Françozo, M. C., I. N. D. Prado, U. Cecato, M. V. Valero, F. Zawadzki, O. L. Ribeiro, R. M. D. Prado, & J. V. Visentainer. 2013. Growth performance, carcass characteristics and meat quality of finishing bulls fed crude glycerin-supplemented diets. Braz. Arch. Biol. Technol. 56: 327–336.

    Article  Google Scholar 

  • Gowda, N. K., N. C. Vallesha, V. B. Awachat, S. Anandan, D. T. Pal, & C. S. Prasad. 2015. Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Trop. Anim. Health Prod. 47: 557–561.

    Article  Google Scholar 

  • Honikel, K. O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49: 447–457.

    Article  CAS  Google Scholar 

  • Huff-Lonergan, E., & S. M. Lonergan. 2005. Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci. 71: 194–204.

    Article  CAS  Google Scholar 

  • Jaturasitha, S., R. Norkeaw, T. Vearasilp, M. Wicke, & M. Kreuzer. 2009. Carcass and meat quality of Thai native cattle fattened on Guinea grass (Panicum maxima) or Guinea grass-legume (Stylosanthes guianensis) pastures. Meat Sci. 81: 155–162.

    Article  CAS  Google Scholar 

  • Kearl, L. C. 1982. Nutrient Requirements of Ruminants in Developing Countries. International Feedstuffs Institute, Utah, USA.

    Google Scholar 

  • Ketnawa, S., P. Chaiwut, & S. Rawdkuen. 2012. Pineapple wastes: a potential source for bromelain extraction. Food Bioprod. Process. 90: 385–391.

    Article  CAS  Google Scholar 

  • Ma, T., Y. Tu, N. F. Zhang, K. D. Deng, & Q. Y. Diao. 2015. Effect of the ratio of non-fibrous carbohydrates to neutral detergent fiber and protein structure on intake, digestibility, rumen fermentation, and nitrogen metabolism in lambs. Asian-Australas. J. Anim. Sci. 28: 1419–1426.

    Article  CAS  Google Scholar 

  • Manni, K., M. Rinne, & P. Huhtanen. 2013. Comparison of concentrate feeding strategies for growing dairy bulls. Livest. Sci. 152: 21–30.

    Article  Google Scholar 

  • Maurer, H. R. 2001. Bromelain: biochemistry, pharmacology and medical use. Cell. Mol. Life Sci. 58: 1234–1245.

    Article  CAS  Google Scholar 

  • Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80: 1463–1481.

    Article  CAS  Google Scholar 

  • Moloney, A. P., M. G. Keane, M. T. Mooney, K. Rezek, F. J. Smulders, & D. J. Troy. 2008. Energy supply patterns for finishing steers: feed conversion efficiency, components of bodyweight gain and meat quality. Meat Sci. 79: 86–97.

    Article  CAS  Google Scholar 

  • Plaizier, J. C., D. O. Krause, G. N. Gozho, & B. W. McBride. 2008. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J. 176: 21–31.

    Article  CAS  Google Scholar 

  • R Core Team. 2017. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Russell, J. B., & D. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39: 604–610.

    Article  CAS  Google Scholar 

  • Sawanon, S. 2013. Organic Beef Production. Kasetsart University Press, Bangkok, Thailand. (in Thai)

    Google Scholar 

  • Stewart, C. S. 1977. Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol. 33: 497–502.

    Article  CAS  Google Scholar 

  • Suksathit, S., C. Wachirapakorn, & Y. Opatpatanakit. 2011. Effects of levels of ensiled pineapple waste and pangola hay fed as roughage sources on feed intake, nutrient digestibility and ruminal fermentation of Southern Thai native cattle. Sonklanakarin J. Sci. Technol. 33: 281–289.

    CAS  Google Scholar 

  • Tessema, Z., & R. M. T. Baars. 2004. Chemical composition, in vitro dry matter digestibility and ruminal degradation of Napier grass (Pennisetum purpureum (L.) Schumach.) mixed with different levels of Sesbania sesban (L.) Merr. Anim. Feed Sci. Technol. 117: 29–41.

  • Upadhyay, A., J. Lama, & S. Tawata. 2013. Utilization of pineapple waste: a review. J. Food Sci. Technol. Nepal 6: 10–18.

    Article  Google Scholar 

  • Van Dung, D., W. Shang, & W. Yao. 2014. Effect of Crude protein levels in concentrate and concentrate levels in diet on in vitro fermentation. Asian-Australas. J. Anim. Sci. 27: 797–805.

    Article  Google Scholar 

  • Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971–974.

    Article  CAS  Google Scholar 

  • Zainuddin, M. F., R. Shamsudin, M. N. Mokhtar, & D. Ismail. 2014. Physicochemical properties of pineapple plant waste fibers from the leaves and stems of different varieties. BioResources 9: 5311–5324.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Graduate Program Scholarship from the Graduate School, Kasetsart University, Thailand and the Agricultural Research and Development Agency (ARDA) Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suriya Sawanon.

Ethics declarations

The experimental protocol was reviewed and approved by The Animal Usage and Ethics Committee of Kasetsart University, Thailand (ACKU60-AGK-004).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pintadis, S., Boonsaen, P., Hattakum, C. et al. Effects of concentrate levels and pineapple stem on growth performance, carcass and meat quality of dairy steers. Trop Anim Health Prod 52, 1911–1917 (2020). https://doi.org/10.1007/s11250-019-02195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02195-4

Keywords

Navigation