Skip to main content
Log in

Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

It is essential to the establishment of EHL as a quantitative field, that reference materials be selected and accurately characterized so that calculations may be compared with experiment. Three materials were selected as somewhat representative of the viscosity dependence on temperature, pressure and shear that may be observed in EHL lubrication:

  1. 1.

    Squalane

  2. 2.

    Poly(ethylene glycol-ran-propylene glycol)

  3. 3.

    Squalane +15% by weight of Polyisoprene, cis.

The properties of these materials were measured over a range of temperature and pressure using experimental techniques which have been shown to give accurate measurements for presently established reference materials. Models are provided for use in elastohydrodynamic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

Abbreviations

a V :

thermal expansivity defined for volume linear with temperature, K−1

B :

Doolittle parameter

D F :

fragility parameter in the VTF equation

G :

liquid critical shear stress or material modulus associated with λ, Pa

h :

film thickness, m

K :

isothermal bulk modulus, Pa

K 0 :

isothermal bulk modulus at p = 0, Pa

K 0 :

pressure rate of change of isothermal bulk modulus at p = 0

K 00 :

K 0 at zero absolute temperature, Pa

m :

exponent for a shifting rule

N 1 :

first normal stress difference, the tension in the flow direction minus the tension in the cross-film direction, Pa

N 2 :

second normal stress difference, the tension in the cross-film direction minus the tension in the neutral direction, Pa

n :

power-law exponent

p :

pressure, Pa

R 0 :

occupied volume fraction at reference state, T R, p = 0

T :

temperature, K

T :

divergence temperature, K

T R :

reference temperature, °C

V :

volume at T and p, m3

V R :

volume at reference state, T R, p = 0, m3

V 0 :

volume at p = 0, m3

V :

occupied volume, m3

V ∞R :

occupied volume at reference state, T R, p = 0, m3

α:

local pressure–viscosity coefficient, Pa−1

α0 :

initial pressure–viscosity coefficient, Pa−1

α*:

reciprocal asymptotic isoviscous pressure coefficient (=1/p ai), Pa−1

αB :

secant pressure–viscosity coefficient, Pa−1

αfilm :

general film-forming pressure–viscosity coefficient, Pa−1

β K :

temperature coefficient of K 0, K−1

\(\dot{\gamma}\) :

shear rate, s−1

ɛ:

occupied volume thermal expansivity, K−1

η:

rate-dependent shear viscosity, Pa s

λ:

characteristic or relaxation time, s

μ:

limiting low-shear viscosity and Newtonian viscosity, Pa s

μR :

low-shear viscosity at reference state, T R, p = 0, Pa s

μ :

viscosity extrapolated to infinite temperature, Pa s

ρ:

mass density, kg/m3

ρR :

mass density, at reference state, T R, p = 0, kg/m3

σ:

regression fit quality, \(\sqrt {\sum\limits_1^N {{{{{[(x_{{\text{meas}}} - x_{{\text{calc}}} )} \mathord{\left/ {\vphantom {{[(x_{{\text{meas}}} - x_{{\text{calc}}} )} {x_{{\text{meas}}} ]^2 }}} \right. \kern-\nulldelimiterspace} {x_{{\text{meas}}} ]^2 }}} \mathord{\left/ {\vphantom {{{{[(x_{{\text{meas}}} - x_{{\text{calc}}} )} \mathord{\left/{\vphantom {{[(x_{{\text{meas}}} - x_{{\text{calc}}} )} {x_{{\text{meas}}} ]^2 }}} \right. \kern-\nulldelimiterspace} {x_{{\text{meas}}} ]^2 }}} N}} \right. \kern-\nulldelimiterspace} N}}}\)

τ:

shear stress, Pa

References

  1. R.L. Fusaro, Tribology Needs for Future Space and Aeronautical Systems. NASA Technical Memorandum 104525:2

  2. Bair S. (2000) Proc. Instn. Mech. Engrs. 214(Part J):515

    Google Scholar 

  3. Kleinschmidt R.V., Bradbury D., Mark M., (1953). Viscosity and Density of Over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F. ASME, New York

    Google Scholar 

  4. J.A. Dixon, W. Webb, W.A. Steele, Properties of Hydrocarbons of High-Molecular Weight Synthesized by Research Project 42 of the American Petroleum Institute. Pennsylvania State University (1962)

  5. Crook A.W., (1963) Phil. Trans. Roy. Soc. Lond., Series A 255(1056): 281

    Article  Google Scholar 

  6. C.J.A. Roelands, Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oils, Ph.D. thesis (University of Technology, Delft, 1996) 94

  7. Sorab J., Vanarsdale W.E., (1991) STLE Trib. Trans. 34(3): 604

    Article  CAS  Google Scholar 

  8. Harris T.A., Barnsby R.M., (2001) Instn. Mech. Engrs. 215(Part J):577

    Google Scholar 

  9. Paluch M., Denzik Z., Rzoska S.J., (1999) Phys. Rev. B 60(5):2979

    Article  CAS  Google Scholar 

  10. Novak J.D., Winer W.O., (1968) ASME J. Lubr. Techn. 90(Ser. F, No. 3):580

    CAS  Google Scholar 

  11. Johnston G.J., Wayte R., Spikes H.A., (1991) STLE Trib. Trans. 34(2):187

    Article  CAS  Google Scholar 

  12. M. Hartl, J. Molimard, I. Krupka, P. Vergne, M. Querry, R. Poliscuk and M. Liska, in: Thinning Films and Tribological Interfaces. D. Dowson et al. (eds), (Elsevier, 2000) pp. 695–704.

  13. Glovnea R.P., Olver A.V., Spikes H.A., (2005) STLE Trib. Trans. 48: 328

    Article  CAS  Google Scholar 

  14. Bair S., Vergne P., Querry M., (2005) Trib. Lett. 18(2):145

    Article  Google Scholar 

  15. Bair S., McCabe C., Cummings P.T., (2002) Tribol. Lett.13(4): 251

    Article  CAS  Google Scholar 

  16. Bair S., Qureshi F., (2002) STLE Tribol. Trans. 45:390

    Article  CAS  Google Scholar 

  17. Harris K.R., (2000) J. Chem. Eng. Data 45(3):893

    Article  CAS  Google Scholar 

  18. Caetano F.J.P., Fareleira J.M.N.A., Oliveira C.M.B.P., Wakeham W.A., (2005) J. Chem. Eng. Data 50(6):1875

    Article  CAS  Google Scholar 

  19. Caudwell D.R., Trusler J.P.M., Vesovic V., Wakeham W.A., (2004) Int. J. Thermophys. 25(5):1339

    Article  CAS  Google Scholar 

  20. Bair S. (2004), STLE Trib. Trans. 47(3):356

    Article  CAS  Google Scholar 

  21. Walker I.R., (1999) Rev. Sci. Instruments 70(8):3402

    Article  CAS  Google Scholar 

  22. C.R. Schultheisz, S.D. Leight, Certification of the Rheological Behavior of SRM 2490, Polyisobutylene Dissolved in 2,6,10,14-Tetramethylpentadecane, NIST Special Publication 260-143 (2002)

  23. Kottke P., Bair S.S., Winer W.O., (2005) AICHE J. 51(8):2150

    Article  CAS  Google Scholar 

  24. Bair S., (1996) Rheol. Acta 35:13

    Article  CAS  Google Scholar 

  25. Whorlow R.W., (1980) Rheological Techniques. Wiley, New York, p. 45

    Google Scholar 

  26. Bair S., Jarzynski J., Winer W.O., (2001) Tribol. Int. 34(7): 461

    Article  Google Scholar 

  27. P.W. Bridgman (1970), The Physics of High Pressure. Dover, New York, p. 128

    Google Scholar 

  28. S. Bair, Y. Liu, Q.J. Wang, The Pressure–Viscosity Coefficient for Newtonian EHL Film Thickness with General Piezoviscous Response. ASME paper Trib-05-1170 (2006)

  29. Angell C.A., (1995) Science 276:1924

    Article  Google Scholar 

  30. Bair S., McCabe C., Cummings P.T., (2002) Phys. Rev. Lett. 88(5):058302-1

    Article  Google Scholar 

  31. McCabe C., Bedrov D., Borodin O., Smith G.D., Cummings P.T., (2003) Ind. Eng. Chem. Res. 42(6):6956

    Article  CAS  Google Scholar 

  32. Tanner R.I., (2000) Engineering Rheology, 2nd ed. Oxford University Press, Oxford, p. 160

    Google Scholar 

  33. McDonald J.R., (1966) Rev. Modern Phys. 38(4): 699

    Google Scholar 

  34. Fakhreddine Y.A., Zoller P., (1990) J. Appl. Polymer Sci. 41:1087

    Article  CAS  Google Scholar 

  35. Fandino O., Pensada A.S., Lugo L., Comunas M.J.P., Fernandez J. (2005) J. Chem. Eng. Data 50:939

    Article  CAS  Google Scholar 

  36. Cook R.L., King H.E., Herbst C.A., Herschbach D.R., (1994). J. Chem. Phys. 100(7):5178

    Article  CAS  Google Scholar 

  37. Paluch M., Denzik Z., Rzoska S.J., (1999) Phys. Rev. B 60(5):2979

    Article  CAS  Google Scholar 

  38. Greenwood J.A., (2000) Proc. Instn. Mech. Engrs. 214(Part J):29

    Google Scholar 

  39. S. Bair, M. Kotzalas, The Contribution of Roller Compliance to Elastohydrodynamic Traction. STLE Trib. Trans. 49(2)(2006) 218

Download references

Acknowledgment

The measurements reported here were supported by a grant from the Timken Company. The design and construction of the high-pressure rheogoniometer was funded by a grant from Valvoline Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Bair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bair, S. Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization. Tribol Lett 22, 197–206 (2006). https://doi.org/10.1007/s11249-006-9083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9083-y

Keywords

Navigation