Skip to main content

Advertisement

Log in

Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White’

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Lilium longiflorum cv. ‘Nellie White’ assumes a great economic importance as cut flowers, being one of the most valuable species (annual pot plants value above $20,000,000) in terms of wholesales in the US. The root lesion nematode Pratylenchus penetrans (RLN) constitutes one of the main pests for lily producers due to the significant root damage it causes. Our efforts have focused on the generation of soybean hairy roots (as a transient test model) and stable transgenic lilies overexpressing a modified rice cystatin (Oc-IΔD86) transgene and challenged with root lesion nematodes. Lily transformation was achieved by gene gun co-bombardment using both a pBluescript-based vector containing the cystatin gene and pDM307 that contains a bar gene for phosphinothricin selection. Both soybean hairy roots and lilies overexpressing the OcIΔD86 transgene exhibited enhanced resistance to RLN infection by means of nematode reduction up to 75 ± 5 % on the total number of nematodes. In addition, lily plants overexpressing OcIΔD86 displayed an increase of plant mass and better growth performance in comparison to wild-type plants, thereby demonstrating an alternative strategy for increasing the yield and reducing nematode damage to this important floral crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson HJ, Urwin PE, Hansen E, McPherson MJ (1995) Designs for engineered resistance to root-parasitic nematodes. Trends Biotechnol 13:369–374

    Article  CAS  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa N, Mii M (2010) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280

    Article  Google Scholar 

  • Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol Lett 33:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Benchabane M, Schluter U, Voester J, Goulet M-C, Michaud D (2010) Plant cystatins. Biochimie 92:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Byrd DW, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Cao J, Duan X, McElroy D, Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11:586–591

    Article  CAS  PubMed  Google Scholar 

  • Castillo P, Vovlas N (2007) Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Nematology monographs and perspectives, vol 6. Brill, Leiden-Boston, p 529

  • Chan Y-L, Yang A-H, Chen J-T, Yeh K-W, Chan M-T (2010) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep 29:231–238

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 10:195–204

    Article  Google Scholar 

  • Cohen A, Krens FA (2012) Genetic transformation in the breeding of flower bulbs. Floric Ornam Biotechnol 6:24–34

    Google Scholar 

  • Cowgill SE, Atkinson HJ (2003) A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on nontarget herbivorous insects. Transgenic Res 12:439–449

    Article  CAS  PubMed  Google Scholar 

  • Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol 39:915–923

    Article  Google Scholar 

  • Cowgill SE, Danks C, Atkinson HJ (2004) Multitrophic interactions involving genetically modified potatoes, nontarget aphids, natural enemies and hyperparasitoids. Mol Ecol 13:639–647

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    Article  CAS  PubMed  Google Scholar 

  • Green J, Wang D, Lilley JL, Urwin PE, Atkinson HJ (2012) Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality. Plos One 7:e30973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jayatilake DV, Tucker EJ, Bariana H, Kuchel H, Edwards J, McKay A, Chalmers K, Mather DE (2013) Genetic mapping and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus. BMC Plant Biol 13:e230

    Article  Google Scholar 

  • Jones MGK, Fosu-Nyarko J (2014) Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Annals Appl Biol 164:163–181

    Article  CAS  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML, Perry RL (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  PubMed  Google Scholar 

  • Kamo K (2010) Conditions for biolistic-mediated transformation of Lilium longiflorum ‘Nellie White’. Floric Ornam Biotechnol 7:71–96

    Google Scholar 

  • Kamo K (2011) Inherited transgene expression of the uidA and bar genes in Lilium longiflorum cv. ‘Nellie White’. Floric Ornam Biotechnol 5:35–39

    Google Scholar 

  • Kamo K (2014) Long term, transgene expression in Lilium longiflorum ‘Nellie White’ grown outdoors and in the greenhouse. Sci Hortic 167:158–163

    Article  CAS  Google Scholar 

  • Kamo K, Han BH (2008) Biolistic-mediated transformation of Lilium longiflorum cv. Nellie White. HortScience 43:1864–1869

    Google Scholar 

  • Kamo K, Joung HY (2009) Long-term gus expression from Gladiolus callus lines containing either a bar-uidA fusion gene or bar and uidA delivered on separate plasmids. Plant Cell Tissue Organ 98:263–272

    Article  CAS  Google Scholar 

  • Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123

    Article  CAS  PubMed  Google Scholar 

  • Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ (2004) Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne and Globodera spp. Plant Biotechnol 2:3–12

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Martinez M, Cambra I, Gonzalez-Melendi P, Santamaria ME, Diaz I (2012) C1A cysteine-proteases and their inhibitors in plants. Physiol Plant 145:85–94

    Article  CAS  PubMed  Google Scholar 

  • McCarter JP (2009) Molecular approaches toward resistance to plant-parasitic nematodes. In: Berg RH, Taylor C (eds) Cell biology of plant nematode parasitism. Plant Cell Monogr, vol 15. Springer Science+Business Media, pp 239–267

  • Mercuri A, de Benedetti L, Bruna S, Bregliana R, Bianchini C, Foglia G, Chiva T (2003) Agrobacterium-mediated transformation with rol genes of Lilium longiflorum Thunb. Acta Hortic 612:129–136

    CAS  Google Scholar 

  • Mizukubo T, Adachi H (1997) Effect of temperature on Pratylenchus penetrans development. J Nematol 29:306–314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oldach KL, Peck DM, Nair RM, Sokolova M, Harris J, Bogacki P, Ballard R (2014) Genetic analysis of tolerance to the root lesion nematode Pratylenchus neglectus in the legume Medicago littoralis. BMC Plant Biol 14:e100

    Article  Google Scholar 

  • Plovie E, De Buck S, Goeleven E, Tanghe M, Vercauteren I, Gheysen G (2003) Hairy roots for transgenic nematode resistance: think twice. Nematology 5:831–841

    Article  CAS  Google Scholar 

  • Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE, Atkinson HJ (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851

    Article  CAS  PubMed  Google Scholar 

  • Rotenberg D, MacGuidwin AE, Saeed IAM, Rouse DI (2004) Interaction of spatially separated Pratylenchus penetrans and Verticillium dahliae on potato measured by impaired photosynthesis. Plant Pathol 53:294–302

    Article  Google Scholar 

  • Samac DA, Smigocki A (2003) Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. Phytopathology 93:799–804

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–510

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kopisch-Obuch FJ, Keil T, Laubach E, Stein N, Graner A, Jung C (2011) QTL analysis of root-lesion nematode resistance in barley: 1. Pratylenchus neglectus. Theor Appl Genet 122:1321–1330

    Article  PubMed  Google Scholar 

  • Urwin PE, Atkinson HJ, Waller DA, McPherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8:121–131

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12:455–461

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204:472–479

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Levesley A, McPherson MJ, Atkinson HJ (2000) Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Mol Breed 6:257–264

    Article  CAS  Google Scholar 

  • Urwin PE, Green J, Atkinson HJ (2003) Resistance to Globodera spp. conferred by a plant cystatin alone and enhancement by a cystatin pyramided with natural resistance. Mol Breed 12:263–269

    Article  CAS  Google Scholar 

  • USDA Statistics Floriculture Crops (2014) Floriculture Crops 2013 Summary, June 2014. http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-06-19-2014.pdf

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance in transgenic rice plants. Theor Appl Genet 96:266–271

    Article  CAS  Google Scholar 

  • Van der Vyver C, Schneidereit J, Driscoll S, Turner J, Kunert K, Foyer CH (2003) Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotechnol J 1:101–112

    Article  PubMed  Google Scholar 

  • Vrain TC, Copeman RJ (1987) Interactions between Agrobacterium tumefaciens and Pratylenchus penetrans in the roots of two red raspberry cultivars. Can J Plant Pathol 9:236–240

    Article  Google Scholar 

  • Wang Y, van Kronenburg B, Menzel T, Maliepaard C, Shen X, Krens F (2012) Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars. Plant Cell Tissue Organ Cult 111:113–122

    Article  CAS  Google Scholar 

  • Westerdahl BB, Giraud D, Radewald JD, Anderson CA, Darso J (1993) Management of Pratylenchus penetrans on oriental lilies with drip and foliar-applied nematicides. J Nematol 25:758–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westerdahl BB, Giraud D, Etter S, Riddle LJ, Radewald JD, Anderson CA, Darso J (2003) Management options for Pratylenchus penetrans in Easter lily. J Nematol 35:443–449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams KJ, Taylor SP, Bogacki P, Pallotta M, Bariana HS, Wallwork H (2002) Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theor Appl Genet 104:874–879

    Article  CAS  PubMed  Google Scholar 

  • Wubben MJ, Callahan FE, Triplett BA, Jenkins JN (2009) Phenotypic and molecular evaluation of cotton hairy roots as a model system for studying nematode resistance. Plant Cell Rep 28:1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M (2011) Oriental hybrid Sorbonne homologue of LhMYB12 regulates anthocyanin biosynthesis in flower tepals and tepal spots. Mol Breed 28:381–389

    Article  CAS  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded in part by the Fred C. Gloeckner Foundation and the California Department of Food and Agriculture 2012 Specialty Crop Block Grant awarded to Lee Riddle, Kathryn Kamo, and Rebecca Westerdahl. We thank Dr. Ben Matthews and Margaret McDonald (Soybean and Nematology Laboratory, USDA, Beltsville, MD) for the ‘Williams 82’ soybean seeds and for their helpful suggestions with the soybean hairy root system and Carol Masler (Nematology Laboratory, USDA, Beltsville, MD) for assisting with the nematode cultures. We thank Dr. Jonathan D. Eisenback for paper reviewing. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vieira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, P., Wantoch, S., Lilley, C.J. et al. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White’. Transgenic Res 24, 421–432 (2015). https://doi.org/10.1007/s11248-014-9848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9848-2

Keywords

Navigation