Skip to main content
Log in

Atomic and Molecular Adsorption on Cu(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Due to the wide use of copper-based catalysts in industrial chemical processes, fundamental understanding of the interactions between copper surfaces and various reaction intermediates is highly desired. Here, we performed periodic, self-consistent density functional theory (DFT-GGA) calculations to study the adsorption of five atomic species (H, C, N, O, and S), seven molecular species (NH3, CH4, N2, CO, HCN, NO, and HCOOH), and 13 molecular fragments (CH, CH2, CH3, NH, NH2, OH, CN, COH, HCO, COOH, HCOO, NOH, and HNO) on the Cu(111) surface at a coverage of 0.25 monolayer. The preferred binding site, binding energy, and the corresponding surface deformation energy of each species were determined, as well as the estimated diffusion barrier and diffusion pathway. The binding strengths calculated using the PW91 functional decreased in the following order: CH > C > O > S > CN > NH > N > CH2 > OH > HCOO > COH > H > NH2 > NOH > COOH > HNO > HCO > CH3 > NO > CO > NH3 > HCOOH. No stable binding structures were observed for N2, HCN, and CH4. The adsorbate–surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites were deternined. Using the calculated adsorption energetics, potential energy surfaces were constructed for the direct decomposition of CO, CO2, NO, N2, NH3, and CH4 and the hydrogen-assisted decomposition of CO, CO2, and NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sabatier P (1911) Hydrogénations et déshydrogénations par catalyse. Berichte der Dtsch Chem Gesellschaft 44:1984–2001. https://doi.org/10.1002/cber.19110440303

    Article  CAS  Google Scholar 

  2. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567. https://doi.org/10.1016/j.cherd.2014.03.005

    Article  CAS  Google Scholar 

  3. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products: a review and potential future developments. J CO2 Util 5:66–81. https://doi.org/10.1016/j.jcou.2013.12.005

    Article  CAS  Google Scholar 

  4. Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sustain Energy Rev 44:505–518. https://doi.org/10.1016/j.rser.2015.01.010

    Article  CAS  Google Scholar 

  5. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727. https://doi.org/10.1039/c1cs15008a

    Article  CAS  PubMed  Google Scholar 

  6. Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384. https://doi.org/10.1021/cs200055d

    Article  CAS  Google Scholar 

  7. Byron Smith RJ, Loganathan M, Murthy Shekhar S (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8:1–34. https://doi.org/10.2202/1542-6580.2238

    Article  Google Scholar 

  8. Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Cat Rev 51:325–440. https://doi.org/10.1080/01614940903048661

    Article  CAS  Google Scholar 

  9. Rhodes C, Hutchings GJ, Ward AM (1995) Water-gas shift reaction: finding the mechanistic boundary. Catal Today 23:43–58. https://doi.org/10.1016/0920-5861(94)00135-O

    Article  CAS  Google Scholar 

  10. Senanayake SD, Stacchiola D, Rodriguez JA (2013) Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc Chem Res 46:1702–1711. https://doi.org/10.1021/ar300231p

    Article  CAS  PubMed  Google Scholar 

  11. Bion N, Epron F, Moreno M et al (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51:76–88. https://doi.org/10.1007/s11244-008-9116-x

    Article  CAS  Google Scholar 

  12. Liang F, Zhu H, Qin Z et al (2008) Low-temperature catalytic oxidation of carbon monoxide. Prog Chem 20:1453–1464

    CAS  Google Scholar 

  13. Martínez-Arias A, Gamarra D, Hungría A et al (2013) Characterization of active sites/entities and redox/catalytic correlations in copper-ceria-based catalysts for preferential oxidation of CO in H2-rich streams. Catalysts 3:378–400. https://doi.org/10.3390/catal3020378

    Article  CAS  Google Scholar 

  14. Cheng WH (1999) Development of methanol decomposition catalysts for production of H2 and CO. Acc Chem Res 32:685–691. https://doi.org/10.1021/ar980088+

    Article  CAS  Google Scholar 

  15. Bowker M, Rowbotham E, Leibsle FM, Haq S (1996) The adsorption and decomposition of formic acid on Cu{110}. Surf Sci 349:97–110. https://doi.org/10.1016/0039-6028(95)01069-6

    Article  CAS  Google Scholar 

  16. Dubois LH, Ellis TH, Zegarski BR, Kevan SD (1986) New insights into the kinetics of formic acid decomposition on copper surfaces. Surf Sci 172:385–397. https://doi.org/10.1016/0039-6028(86)90763-6

    Article  CAS  Google Scholar 

  17. Herron JA, Scaranto J, Ferrin P et al (2014) Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal 4:4434–4445. https://doi.org/10.1021/cs500737p

    Article  CAS  Google Scholar 

  18. Sá S, Silva H, Brandão L et al (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99:43–57. https://doi.org/10.1016/j.apcatb.2010.06.015

    Article  CAS  Google Scholar 

  19. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A 179:31–49. https://doi.org/10.1016/S0926-860X(98)00299-3

    Article  CAS  Google Scholar 

  20. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A 179:21–29. https://doi.org/10.1016/S0926-860X(98)00298-1

    Article  CAS  Google Scholar 

  21. Centi G, Perathoner S (1995) Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides. Appl Catal A 132:179–259. https://doi.org/10.1016/0926-860X(95)00154-9

    Article  CAS  Google Scholar 

  22. Komatsu T, Nagai T, Yashima T (2006) Cu-loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia. Res Chem Intermed 32:291–304. https://doi.org/10.1163/156856706777346417

    Article  CAS  Google Scholar 

  23. Mccash EM, Parker SF, Pritchard J, Chesters MA (1989) The adsorption of atomic hydrogen on Cu(111) investigated by reflection-absorption infrared spectroscopy, electron energy loss spectroscopy and low energy electron diffraction. Surf Sci 215:363–377. https://doi.org/10.1016/0039-6028(89)90266-5

    Article  CAS  Google Scholar 

  24. Lee G, Poker DB, Zehner DM, Plummer EW (1996) Coverage and structure of deuterium on Cu(111). Surf Sci 357–358:717–720. https://doi.org/10.1016/0039-6028(96)00252-X

    Article  Google Scholar 

  25. Lee G, Plummer E (2002) High-resolution electron energy loss spectroscopy study on chemisorption of hydrogen on Cu(111). Surf Sci 498:229–236. https://doi.org/10.1016/S0039-6028(01)01765-4

    Article  CAS  Google Scholar 

  26. Lamont CLA, Persson BNJ, Williams GP (1995) Dynamics of atomic adsorbates: hydrogen on Cu(111). Chem Phys Lett 243:429–434. https://doi.org/10.1016/0009-2614(95)00814-K

    Article  CAS  Google Scholar 

  27. Shuttleworth IG (2007) Analysis of the (3 × 3)-H/Cu(111) system using eikonal-level helium atom scattering simulations. Surf Rev Lett 14:1089–1093. https://doi.org/10.1142/S0218625X07010810

    Article  CAS  Google Scholar 

  28. Lloyd PB, Swaminathan M, Kress JW, Tatarchuk BJ (1997) Temperature programmed desorption study of the adsorption and absorption of hydrogen on and in Cu(111). Appl Surf Sci 119:267–274. https://doi.org/10.1016/S0169-4332(97)00178-5

    Article  CAS  Google Scholar 

  29. Greuter F, Ward Plummer E (1983) Chemisorption of atomic hydrogen on Cu(111). Solid State Commun 48:37–41. https://doi.org/10.1016/0038-1098(83)90178-3

    Article  CAS  Google Scholar 

  30. Strömquist J, Bengtsson L, Persson M, Hammer B (1998) The dynamics of H absorption in and adsorption on Cu(111). Surf Sci 397:382–394. https://doi.org/10.1016/S0039-6028(97)00759-0

    Article  Google Scholar 

  31. Gundersen K, Hammer B, Jacobsen KW et al (1993) Chemisorption and vibration of hydrogen on Cu(111). Surf Sci 285:27–30. https://doi.org/10.1016/0039-6028(93)90910-C

    Article  CAS  Google Scholar 

  32. Toomes RL, Robinson J, Driver SM et al (2000) Photoelectron diffraction investigation of the local adsorption site of N on Cu(111). J Phys Condens Matter 12:3981–3991. https://doi.org/10.1088/0953-8984/12/17/306

    Article  CAS  Google Scholar 

  33. Higgs V, Hollins P, Pemble ME, Pritchard J (1986) Formation of a surface nitride on Copper(111) and its influence on carbon monoxide adsorption: investigation by Leed, RAIRS and EELS. Stud Surf Sci Catal 26:137–144. https://doi.org/10.1016/S0167-2991(09)61234-9

    Article  Google Scholar 

  34. Skelly JF, Bertrams T, Munz AW et al (1998) Nitrogen induced restructuring of Cu(111) and explosive desorption of N2. Surf Sci 415:48–61. https://doi.org/10.1016/S0039-6028(98)00460-9

    Article  CAS  Google Scholar 

  35. Driver SM, Woodruff DP (1999) Nitrogen-induced pseudo-(100) reconstruction of the Cu(111) surface identified by STM. Surf Sci 442:1–8. https://doi.org/10.1016/S0039-6028(99)00906-1

    Article  CAS  Google Scholar 

  36. Naumann D’Alnoncourt R, Graf B, Xia X, Muhler M (2008) The back-titration of chemisorbed atomic oxygen on copper by carbon monoxide investigated by microcalorimetry and transient kinetics. J Therm Anal Calorim 91:173–179. https://doi.org/10.1007/s10973-007-8446-4

    Article  CAS  Google Scholar 

  37. Giamello E, Fubini B, Lauro P, Bossi A (1984) A microcalorimetric method for the evaluation of copper surface area in CuZnO catalyst. J Catal 87:443–451. https://doi.org/10.1016/0021-9517(84)90204-5

    Article  CAS  Google Scholar 

  38. Dubois LH (1982) Oxygen chemisorption and cuprous oxide formation on Cu(111): a high resolution EELS study. Surf Sci 119:399–410. https://doi.org/10.1016/0039-6028(82)90306-5

    Article  CAS  Google Scholar 

  39. Sueyoshi T, Sasaki T, Iwasawa Y (1996) Molecular and atomic adsorption states of oxygen on Cu(111) at 100–300 K. Surf Sci 365:310–318. https://doi.org/10.1016/0039-6028(96)00738-8

    Article  CAS  Google Scholar 

  40. Matsumoto T, Bennett RA, Stone P et al (2001) Scanning tunneling microscopy studies of oxygen adsorption on Cu(111). Surf Sci 471:225–245. https://doi.org/10.1016/S0039-6028(00)00918-3

    Article  CAS  Google Scholar 

  41. Spitzer A, Lüth H (1982) The adsorption of oxygen on copper surfaces. II. Cu(111). Surf Sci 118:136–144. https://doi.org/10.1016/0039-6028(82)90019-X

    Article  CAS  Google Scholar 

  42. Simmons GW, Mitchell DF, Lawless R (1967) LEED and HEED studies of the interaction of oxygen with single crystal surfaces of copper. Surf Sci 8:130–164. https://doi.org/10.1016/0039-6028(67)90078-7

    Article  CAS  Google Scholar 

  43. Ertl G (1967) Untersuchung von Oberflächenreaktionen mittels Beugung langsamer Elektronen (LEED) I. Wechselwirkung von O2 und N2O mit (110)-, (111)- und (100)-Kupfer-Oberflächen. Surf Sci 6:208–232. https://doi.org/10.1016/0039-6028(67)90005-2

    Article  Google Scholar 

  44. Jensen F, Besenbacher F, Stensgaard I (1992) Two new oxygen induced reconstructions on Cu(111). Surf Sci 269–270:400–404. https://doi.org/10.1016/0039-6028(92)91282-G

    Article  Google Scholar 

  45. Xu Y, Mavrikakis M (2001) Adsorption and dissociation of O2 on Cu(111): thermochemistry, reaction barrier and the effect of strain. Surf Sci 494:131–144. https://doi.org/10.1016/S0039-6028(01)01464-9

    Article  CAS  Google Scholar 

  46. Besenbacher F, Nørskov JK (1993) Oxygen chemisorption on metal surfaces: general trends for Cu, Ni and Ag. Prog Surf Sci 44:5–66. https://doi.org/10.1016/0079-6816(93)90006-H

    Article  CAS  Google Scholar 

  47. Campbell CT, Koel BE (1987) H2S/Cu(111): a model study of sulfur poisoning of water-gas shift catalysts. Surf Sci 183:100–112. https://doi.org/10.1016/S0039-6028(87)80337-0

    Article  CAS  Google Scholar 

  48. Yang YW, Venkatesh S, Fan LJ et al (2001) NEXAFS study of 1-butanethiol adsorbed on Cu(111) and √7 × √7 R19.1° S/Cu(111). J Synchrotron Radiat 8:1121–1123. https://doi.org/10.1107/S0909049500016782

    Article  CAS  PubMed  Google Scholar 

  49. Sugimasa M, Inukai J, Itaya K (2003) In situ STM studies of sulfur and thiocyanate adlayers on Cu(111) in alkaline solution. J Electroanal Chem 554–555:285–291. https://doi.org/10.1016/S0022-0728(03)00213-4

    Article  CAS  Google Scholar 

  50. Wang G, Jiang L, Cai Z et al (2002) Interaction of the atoms (H, S, O, C) with the Cu(111) surface. J Mol Struct Theochem 589–590:371–378. https://doi.org/10.1016/S0166-1280(02)00292-0

    Article  Google Scholar 

  51. Moler EJ, Kellar SA, Huff WRA et al (1996) Spatial structure determination of (√3×√3)R30° and (1.5 × 1.5)R18° CO or Cu(111) using angle-resolved photoemission extended fine structure. Phys Rev B 54:10862–10868. https://doi.org/10.1103/PhysRevB.54.10862

    Article  CAS  Google Scholar 

  52. Raval R, Parker SF, Pemble ME et al (1988) FT-Rairs, Eels and Leed studies of the adsorption of carbon monoxide on Cu(111). Surf Sci 203:353–377. https://doi.org/10.1016/0039-6028(88)90088-X

    Article  CAS  Google Scholar 

  53. Eve JK, McCash EM (2002) Low-temperature adsorption of CO on Cu(111) studied by RAIRS. Chem Phys Lett 360:202–208. https://doi.org/10.1016/S0009-2614(99)00986-0

    Article  CAS  Google Scholar 

  54. Hirschmugl CJ, Williams GP, Hoffmann FM, Chabal YJ (1990) Adsorbate-substrate resonant interactions observed for CO on Cu (100) in the far infrared. Phys Rev Lett 65:480–483. https://doi.org/10.1103/PhysRevLett.65.480

    Article  CAS  PubMed  Google Scholar 

  55. Hollins P, Pritchard J (1979) Interactions of CO molecules adsorbed on Cu(111). Surf Sci 89:486–495. https://doi.org/10.1016/0039-6028(79)90633-2

    Article  CAS  Google Scholar 

  56. Pritchard J (1979) On the structure of CO adlayers on Cu(100) and Cu(111). Surf Sci 79:231–244. https://doi.org/10.1016/0039-6028(79)90039-6

    Article  CAS  Google Scholar 

  57. Vollmer S, Witte G, Wöll C (2001) Determination of site specific adsorption energies of CO on copper. Catal Lett 77:97–101. https://doi.org/10.1023/A:1012755616064

    Article  CAS  Google Scholar 

  58. Kessler J, Thieme F (1977) Chemisorption of CO on differently prepared Cu(111) surfaces. Surf Sci 67:405–415. https://doi.org/10.1016/0039-6028(77)90003-6

    Article  CAS  Google Scholar 

  59. Hayden BE, Kretzschmar K, Bradshaw AM (1985) An infrared spectroscopic study of CO on Cu(111): the linear, bridging and physisorbed species. Surf Sci 155:553–566. https://doi.org/10.1016/0039-6028(85)90013-5

    Article  CAS  Google Scholar 

  60. Neef M, Doll K (2006) CO adsorption on the Cu(111) surface: a density functional study. Surf Sci 600:1085–1092. https://doi.org/10.1016/j.susc.2005.12.036

    Article  CAS  Google Scholar 

  61. Gajdos M, Hafner J (2004) CO adsorption on Cu(111) and Cu(001) surfaces: improving site preference in dft calculations. Surf Sci 590:117–126. https://doi.org/10.1016/j.susc.2005.04.047

    Article  CAS  Google Scholar 

  62. Sharifzadeh S, Huang P, Carter E (2008) Embedded configuration interaction description of CO on Cu(111): resolution of the site preference conundrum. J Phys Chem C 112:4649–4657. https://doi.org/10.1021/jp710890a

    Article  CAS  Google Scholar 

  63. Bohao C, Yunsheng MA, Liangbing D et al (2013) XPS and TPD study of NO interaction with Cu(111): role of different oxygen species. Chin J Catal 34:964–972. https://doi.org/10.1016/S1872-2067(12)60585-3

    Article  CAS  Google Scholar 

  64. Johnson DW, Matloob MH, Roberts MW (1979) Study of the interaction of nitric oxide with Cu(100) and Cu(111) surfaces using low energy electron diffraction and electron spectroscopy. J Chem Soc Faraday Trans 1 75:2143. https://doi.org/10.1039/f19797502143

    Article  Google Scholar 

  65. Sueyoshi T, Sasaki T, Iwasawa Y (1996) Coadsorption of NO and NH3 on Cu(111): the formation of the stabilized (2 × 2) coadlayer. J Phys Chem 100:13646–13654. https://doi.org/10.1021/jp9606265

    Article  CAS  Google Scholar 

  66. Wendelken JF (1982) Summary Abstract: EELS study of nitric oxide adsorption on Cu(100) and Cu(111) surfaces. J Vac Sci Technol 20:884. https://doi.org/10.1116/1.571377

    Article  Google Scholar 

  67. Balkenende AR, Gijzeman OLJ, Geus JW (1989) The interaction of NO and CO with Cu(111). Appl Surf Sci 37:189–200. https://doi.org/10.1016/0169-4332(89)90482-0

    Article  CAS  Google Scholar 

  68. So S, Franchy R, Ho W (1991) Photodesorption of NO from Ag(111) and Cu(111). J Chem Phys 95:1385–1399. https://doi.org/10.1063/1.461120

    Article  CAS  Google Scholar 

  69. Fernández-García M, Conesa JC, Illas F (1993) The bonding mechanism of NO to Cu(111). Surf Sci 280:441–449. https://doi.org/10.1016/0039-6028(93)90696-H

    Article  Google Scholar 

  70. Illas F, Ricart JM, Fernández-García M (1996) Geometry, vibrational frequencies and bonding mechanism of NO adsorbed on Cu(111). J Chem Phys 104:5647. https://doi.org/10.1063/1.471773

    Article  CAS  Google Scholar 

  71. van Daelen MA, Li YS, Newsam JM, van Santen RA (1996) Energetics and dynamics for NO and CO dissociation on Cu(100) and Cu(111). J Phys Chem 100:2279–2289. https://doi.org/10.1021/jp952319p

    Article  Google Scholar 

  72. Bogicevic A, Hass KC (2002) NO pairing and transformation to N2O on Cu(111) and Pt(111) from first principles. Surf Sci 506:L237–L242. https://doi.org/10.1016/S0039-6028(02)01491-7

    Article  CAS  Google Scholar 

  73. Mavrikakis M, Rempel J, Greeley J et al (2002) Atomic and molecular adsorption on Rh(111). J Chem Phys 117:6737–6744. https://doi.org/10.1063/1.1507104

    Article  CAS  Google Scholar 

  74. Krekelberg WP, Greeley J, Mavrikakis M (2004) Atomic and molecular adsorption on Ir(111). J Phys Chem B 108:987–994. https://doi.org/10.1021/jp035786c

    Article  CAS  Google Scholar 

  75. Ford DC, Xu Y, Mavrikakis M (2005) Atomic and molecular adsorption on Pt(111). Surf Sci 587:159–174. https://doi.org/10.1016/j.susc.2005.04.028

    Article  CAS  Google Scholar 

  76. Herron JA, Tonelli S, Mavrikakis M (2012) Atomic and molecular adsorption on Pd(111). Surf Sci 606:1670–1679. https://doi.org/10.1016/j.susc.2012.07.003

    Article  CAS  Google Scholar 

  77. Herron JA, Tonelli S, Mavrikakis M (2013) Atomic and molecular adsorption on Ru(0001). Surf Sci 614:64–74. https://doi.org/10.1016/j.susc.2013.04.002

    Article  CAS  Google Scholar 

  78. Hahn K, Mavrikakis M (2014) Atomic and molecular adsorption on Re(0001). Top Catal 57:54–68. https://doi.org/10.1007/s11244-013-0162-7

    Article  CAS  Google Scholar 

  79. Santiago-Rodríguez Y, Herron JA, Curet-Arana MC, Mavrikakis M (2014) Atomic and molecular adsorption on Au(111). Surf Sci 627:57–69. https://doi.org/10.1016/j.susc.2014.04.012

    Article  CAS  Google Scholar 

  80. Crowe MC, Campbell CT (2011) Adsorption microcalorimetry: recent advances in instrumentation and application. Annu Rev Anal Chem 4:41–58. https://doi.org/10.1146/annurev-anchem-061010-113841

    Article  CAS  Google Scholar 

  81. Borroni-Bird CE, Al-Sarraf N, Andersoon S, King DA (1991) Single crystal adsorption microcalorimetry. Chem Phys Lett 183:516–520. https://doi.org/10.1016/0009-2614(91)80168-W

    Article  CAS  Google Scholar 

  82. Hummelshøj JS, Abild-Pedersen F, Studt F et al (2012) CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew Chemie 51:272–274. https://doi.org/10.1002/anie.201107947

    Article  CAS  Google Scholar 

  83. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  84. Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348. https://doi.org/10.1146/annurev.physchem.53.100301.131630

    Article  CAS  PubMed  Google Scholar 

  85. Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111). Phys Rev B 46:16067–16080

    Article  CAS  Google Scholar 

  86. Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59:12301–12304. https://doi.org/10.1103/PhysRevB.59.12301

    Article  CAS  Google Scholar 

  87. Chadi DJ, Cohen ML (1973) Special points in the Brillouin zone. Phys Rev B 8:5747–5753

    Article  Google Scholar 

  88. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  89. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  90. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  91. Milman V, Winkler B, White JA, et al (2000) Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int J Quantum Chem 77:895–910. https://doi.org/10.1002/(SICI)1097-461X(2000)77:5%3C895::AID-QUA10%3E3.0.CO;2-C

    Article  CAS  Google Scholar 

  92. Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540:215–229. https://doi.org/10.1016/S0039-6028(03)00790-8

    Article  CAS  Google Scholar 

  93. Ertl G (1979) The Nature of the surface chemical bond. North-Holland Pub. Co., Amsterdam

    Google Scholar 

  94. Gayton AG (1968) Dissociation energies and spectra of diatomic molecules. Chapman & Hall, London

    Google Scholar 

  95. Hertel T, Wolf M, Ertl G (1995) UV photostimulated desorption of ammonia from Cu(111). J Chem Phys 102:3414–3430. https://doi.org/10.1063/1.469215

    Article  CAS  Google Scholar 

  96. Dumas P, Suhren M, Chabal YJ et al (1997) Adsorption and reactivity of NO on Cu(111): a synchrotron infrared reflection absorption spectroscopic study. Surf Sci 371:200–212. https://doi.org/10.1016/S0039-6028(96)00987-9

    Article  CAS  Google Scholar 

  97. Shiozawa Y, Koitaya T, Mukai K et al (2015) Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): the importance of hydrogen bonding between adsorbed species. J Chem Phys 143:234707. https://doi.org/10.1063/1.4937414

    Article  CAS  PubMed  Google Scholar 

  98. Feibelman PJ, Hammer B, Nørskov JK et al (2001) The CO/Pt(111) puzzle. J Phys Chem B 105:4018–4025. https://doi.org/10.1021/jp002302t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the 80th birthday of Prof. Gabor Somorjai. His work has inspired the authors, as many other surface and catalysis scientists, and is greatly appreciated. This work was supported by DOE-BES, Office of Chemical Sciences (Grant DE-FG02-05ER15731). We thank Ellen Murray and Saurabh Bhandari for helpful discussion. The computational work performed in this study was carried out partly through supercomputing resources from the following institutions: the National Energy Research Scientific Computing Center (NERSC); the Center for Nanoscale Materials (CNM) at Argonne National Laboratory (ANL); and the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility at Pacific Northwest National Laboratory (PNNL). EMSL is sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL, whereas CNM and NERSC are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manos Mavrikakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Lin, J., Bai, Y. et al. Atomic and Molecular Adsorption on Cu(111). Top Catal 61, 736–750 (2018). https://doi.org/10.1007/s11244-018-0943-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0943-0

Keywords

Navigation