Skip to main content
Log in

Ammonia removal from effluent streams of wet oxidation under high pressure

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The formation of ammonia is inevitable during industrial-scale wet oxidation of wastewater if nitrogen-containing compounds are present. This undesired side-reaction requires additional measures for disposal. Common routes are either the use of noble metal-containing catalysts in the first oxidation step or end-of-pipe treatment. Problems rise for example from the insufficient stability of solid catalysts against hydrothermal impact. As most of the wet oxidation processes run at elevated pressure and temperature, running the heterogeneously catalysed oxidation of ammonia in the gas phase in a downstream reactor could protect the catalysts mainly from leaching and offers an economic alternative by avoiding loss of unused oxygen after depressurisation. This work reports on the oxidation of ammonia with air in steam atmosphere using Cu,Cr-containing supported and bulk catalysts at 235–305 °C and 30–60 bar. A copper chromite catalyst gave best performance (86% conversion at 305 °C, 45 bar, contact time 1 s). The spinel-type phase CuCr2O4 seems to be the active phase and shows superior stability. The results indicate that phase behaviour of water strongly influences activity and lifetime of catalysts. Characterisation of the solids (BET, XRD, XPS, ICP) proved that deactivation is mainly caused by leaching of Cr(VI) species from catalysts when the reaction runs near to dew point of water and by loss of BET surface area of supported catalysts due to hydrothermal impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Mishra V.V. Mahajani J.B. Joshi (1995) Ind. Eng. Chem. Res. 34 2 Occurrence Handle1:CAS:528:DyaK2MXjtFGks78%3D

    CAS  Google Scholar 

  2. F. Luck (1996) Catal. Today 27 195 Occurrence Handle1:CAS:528:DyaK28XhtF2hsbg%3D

    CAS  Google Scholar 

  3. S.T. Kolaczkowski P. Plucinski F.J. Beltran F.J. Rivas D.B. McLurgh (1999) Chem. Eng. J. 73 143 Occurrence Handle1:CAS:528:DyaK1MXks1Ckt7o%3D

    CAS  Google Scholar 

  4. F. Luck (1999) Catal. Today 53 81 Occurrence Handle1:CAS:528:DyaK1MXmsFajsrw%3D

    CAS  Google Scholar 

  5. R.K. Helling J.W. Tester (1988) Environ. Sci. Technol. 22 1319 Occurrence Handle1:CAS:528:DyaL1cXlslGlt7s%3D

    CAS  Google Scholar 

  6. Z.Y. Ding M.A. Frisch L. Li E.F. Gloyna (1996) Ind. Eng. Chem. Res. 35 3257 Occurrence Handle1:CAS:528:DyaK28Xls1ehtrk%3D

    CAS  Google Scholar 

  7. H. Schmieder J. Abeln (1999) Chem. Eng. Technol. 22 903 Occurrence Handle1:CAS:528:DyaK1MXnsFOhs7Y%3D

    CAS  Google Scholar 

  8. L. Oliviero J. Barbier SuffixJr. D. Duprez (2003) Appl. Catal. B 40 163 Occurrence Handle1:CAS:528:DC%2BD3sXptFCjsg%3D%3D

    CAS  Google Scholar 

  9. J. Qin K. Aika (1998) Appl. Catal. B 16 261 Occurrence Handle1:CAS:528:DyaK1cXhvVygs7w%3D

    CAS  Google Scholar 

  10. J. Taguchi T. Okuhara (2000) Appl. Catal. A 194 89

    Google Scholar 

  11. R. Ukropec B.F.M. Kuster J.C. Schouten R.A. Santen Particlevan (1999) Appl. Catal. B 23 45 Occurrence Handle1:CAS:528:DyaK1MXmvVKjtbg%3D

    CAS  Google Scholar 

  12. J. Barbier L. Oliviero B. Renard D. Duprez (2002) Catal. Today 75 29 Occurrence Handle1:CAS:528:DC%2BD38XksFKqtbw%3D

    CAS  Google Scholar 

  13. S. Kaewpuang-Ngam K. Inazu T. Kobayashi K-I. Aika (2004) Water Res. 38 778 Occurrence Handle1:CAS:528:DC%2BD2cXit1WntA%3D%3D Occurrence Handle14723948

    CAS  PubMed  Google Scholar 

  14. F.E. Hancock (1999) Catal. Today 53 3 Occurrence Handle1:CAS:528:DyaK1MXmsFWqu7s%3D

    CAS  Google Scholar 

  15. S. Cao G. Chen X. Hu P.L. Yue (2003) Catal. Today 88 37 Occurrence Handle1:CAS:528:DC%2BD3sXpvVWjsbs%3D

    CAS  Google Scholar 

  16. B.M. Reddy I.R. Ganesh (2001) J. Mol. Catal. 169 207 Occurrence Handle1:CAS:528:DC%2BD3MXhvFCitLg%3D

    CAS  Google Scholar 

  17. N.O. Savage S.A. Akbar P.K. Dutta (2001) Sensors and Actuators B 72 239

    Google Scholar 

  18. J. Nair P. Nair F. Mizukami Y. Oosawa T. Okubo (1999) Mat. Res. Bull. 34 1275 Occurrence Handle1:CAS:528:DyaK1MXmvVGltL4%3D

    CAS  Google Scholar 

  19. S. Karvinen (2003) Solid State Sci. 5 811 Occurrence Handle1:CAS:528:DC%2BD3sXjvV2gtb4%3D

    CAS  Google Scholar 

  20. C. Flego A. Carati C. Perego (2001) Microporous Mesoporous Mat. 44–45 733

    Google Scholar 

  21. J.M. McHale K. Yurekli D.M. Dabbs A. Navrotsky S. Sundaresan I.A. Aksay (1997) Chem. Mater. 9 3096 Occurrence Handle1:CAS:528:DyaK2sXnsVCnurg%3D

    CAS  Google Scholar 

  22. M. Richter A. Trunschke U. Bentrup E. Schreier K-W. Brzezinka M. Schneider R. Fricke (2002) J. Catal. 206 98 Occurrence Handle1:CAS:528:DC%2BD38XhtFalsbc%3D

    CAS  Google Scholar 

  23. Trimm D.L., in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knözinger and Weitkamp J., (Wiley, New York, 1997) 1278 pp. and refs. therein

  24. S. Bennici A. Gervasini N. Ravasio F. Zaccheria (2003) J. Phys. Chem. B 107 5168 Occurrence Handle1:CAS:528:DC%2BD3sXjs1GltLk%3D

    CAS  Google Scholar 

  25. W. Wagner A. Pruß (1996) Chem.-Ing.-Tech. 68 1100

    Google Scholar 

  26. Chemistry WebBook Internet edition, National Institute of Standards and Technology (NIST), URL: http://webbook.nist.gov/chemistry/name-ser.htm

  27. J. Gmehling B. Kolbe (1992) Thermodynamik VCH, Weinheim New York, Basel, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martin.

Additional information

A member of the EU-funded Coordination Action of Nanostructured Catalytic Oxide Research and Development in Europe (CONCORDE).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A., Luck, F., Armbruster, U. et al. Ammonia removal from effluent streams of wet oxidation under high pressure. Top Catal 33, 155–169 (2005). https://doi.org/10.1007/s11244-005-2522-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-2522-4

Keywords

Navigation