Skip to main content
Log in

N3/4-pyridinyl Schiff base copper(II) benzoate complexes: synthesis, crystal structures and ring-opening polymerization studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Five benzoate complexes of copper(II) were synthesized by the reaction of N-donor Schiff base ligands with copper(II) acetate and benzoate co-ligands. All complexes were characterized by physicochemical, spectroscopic techniques and single-crystal X-ray diffraction studies. Crystal structure analysis revealed mononuclear complexes Cu(C6H5COO)2(L1)2·H2O (1) with a square pyramidal geometry and Cu(Me-C6H5COO)2(L2)2·2H2O (3) with a distorted octahedral geometry around the Cu(II) center. Three other complexes [Cu(C6H5COO)2(L2)]2·(2), [Cu(Me-C6H5COO)2(L3)]2·(4) and [Cu(C6H5COO)2(L4)]2·(5) all adopted a paddlewheel conformation in which the two Cu(II) centers each have a square pyramidal geometry. All complexes were found to be active as catalyst in ring-opening polymerization of ɛ-caprolactone (ε-CL), yielding low molecular weight polymers of about 2200 g mol−1 to 3870 g mol−1. The activity of complex 4 increased with the addition of different alcohol co-initiators except in t-butanol where a reduction was obtained arguably due to steric hindrance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pitt CG, Marks TA, Schindler A (1980) Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. Academic Press, New York

    Google Scholar 

  2. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645):860–862

    Article  CAS  PubMed  Google Scholar 

  3. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    Article  CAS  Google Scholar 

  4. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. Sustain Chem Eng 4(6):2899–2916

    Article  CAS  Google Scholar 

  5. Ajellal N, Carpentier J-F, Guillaume C, Guillaume SM, Helou M, Poirier V, Sarazin Y, Trifonov A (2010) Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans 39(36):8363–8376

    Article  CAS  PubMed  Google Scholar 

  6. Platel RH, Hodgson LM, Williams CK (2008) Biocompatible initiators for lactide polymerization. Polym Rev 48(1):11–63

    Article  CAS  Google Scholar 

  7. Arbaoui A, Redshaw C (2010) Metal catalysts for ɛ-caprolactone polymerisation. Polym Chem 1(6):801–826

    Article  CAS  Google Scholar 

  8. Sinha V, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ɛ-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23

    Article  CAS  PubMed  Google Scholar 

  9. Fuoco T, Pappalardo D (2017) Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters. Catalysts 7(2):64

    Article  CAS  Google Scholar 

  10. Ahn SH, Chun MK, Kim E, Jeong JH, Nayab S, Lee H (2017) Copper(II) complexes containing N,N′-bidentate N-substituted N-(pyridin-2-ylmethyl)amine: synthesis, structure and application towards polymerization of rac-lactide. Polyhedron 127:51–58

    Article  CAS  Google Scholar 

  11. Fortun S, Daneshmand P, Schaper F (2015) Isotactic rac-Lactide polymerization with copper complexes: the influence of complex nuclearity. Angew Chem Int Ed 54(46):13669–13672

    Article  CAS  Google Scholar 

  12. Kwon KS, Cho J, Nayab S, Jeong JH (2015) Rapid and controlled polymerization of rac-lactide using copper(II) complexes of methyl-naphthalenylmethyl-(R, R)-1,2-diaminocyclohexanes. Inorg Chem Commun 55:36–38

    Article  CAS  Google Scholar 

  13. Biernesser AB, Delle Chiaie KR, Curley JB, Byers JA (2016) Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst. Angew Chem Int Ed 55(17):5251–5254

    Article  CAS  Google Scholar 

  14. Li X-Q, Wang B, Ji H-Y, Li Y-S (2016) Insights into the mechanism for ring-opening polymerization of lactide catalyzed by Zn(C6F5)2/organic superbase Lewis pairs. Catal Sci Technol 6(21):7763–7772

    Article  CAS  Google Scholar 

  15. Obuah C, Lochee Y, Jordaan JHL, Otto DP, Nyokong T, Darkwa J (2015) (Ferrocenylpyrazolyl)zinc(II) benzoates as catalysts for the ring opening polymerization of ε-caprolactone. Polyhedron 90:154–164

    Article  CAS  Google Scholar 

  16. Kong W-L, Chai Z-Y, Wang Z-X (2014) Synthesis of N,N, O-chelate zinc and aluminum complexes and their catalysis in the ring-opening polymerization of ɛ-caprolactone and rac-lactide. Dalton Trans 43(38):14470–14480

    Article  CAS  PubMed  Google Scholar 

  17. Gerling KA, Rezayee NM, Rheingold AL, Green DB, Fritsch JM (2014) Synthesis and structures of bis-ligated zinc complexes supported by tridentate ketoimines that initiate L-lactide polymerization. Dalton Trans 43(43):16498–16508

    Article  CAS  PubMed  Google Scholar 

  18. Kong W-L, Wang Z-X (2014) Dinuclear magnesium, zinc and aluminum complexes supported by bis(iminopyrrolide) ligands: synthesis, structures, and catalysis toward the ring-opening polymerization of ε-caprolactone and rac-lactide. Dalton Trans 43(24):9126–9135

    Article  CAS  PubMed  Google Scholar 

  19. Ulery B, Nair L, Laurencin C (2011) Biomedical of biodegradable polymers: review. J Polym Sci Part B Polym Phys 49:832–864

    Article  CAS  Google Scholar 

  20. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  21. Whitehorne TJJ, Schaper F (2013) Square-planar Cu(II) diketiminate complexes in lactide polymerization. Inorg Chem 52(23):13612–13622

    Article  CAS  PubMed  Google Scholar 

  22. Katiyar V, Nanavati H (2010) Ring-opening polymerization of L-lactide using N-heterocyclic molecules: mechanistic, kinetics and DFT studies. Polym Chem 1(9):1491–1500

    Article  CAS  Google Scholar 

  23. Appavoo D, Omondi B, Guzei IA, van Wyk JL, Zinyemba O, Darkwa J (2014) Bis(3,5-dimethylpyrazole) copper(II) and zinc(II) complexes as efficient initiators for the ring opening polymerization of ε-caprolactone and d, l-lactide. Polyhedron 69:55–60

    Article  CAS  Google Scholar 

  24. Schäfer PM, Fuchs M, Ohligschläger A, Rittinghaus R, McKeown P, Akin E, Schmidt M, Hoffmann A, Liauw MA, Jones MD, Herres-Pawlis S (2017) Highly active N, O zinc guanidine catalysts for the ring-opening polymerization of lactide. Chemsuschem 10(18):3547–3556

    Article  PubMed  CAS  Google Scholar 

  25. Njogu EM, Omondi B, Nyamori VO (2017) Silver(I)-pyridinyl Schiff base complexes: synthesis, structural characterization and reactivity in ring-opening polymerisation of ε-caprolactone. Inorg Chim Acta 457:160–170

    Article  CAS  Google Scholar 

  26. Sarma R, Kalita D, Baruah JB (2009) Solvent induced reactivity of 3,5-dimethylpyrazole towards zinc (II) carboxylates. Dalton Trans 36:7428–7436

    Article  CAS  Google Scholar 

  27. Bruker (2009) SAINT, SAINT Bruker AXS Inc, Madison, Wisconsin

  28. Bruker (2009) SADABS, Bruker SADABS Bruker AXS Inc, Madison,Wisconsin

  29. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  30. Sheldrick G (2008) Shelx. Acta Crystallogr Sect A Found Crystallogr 64:112–122

    Article  CAS  Google Scholar 

  31. Buis N, French SA, Ruggiero GD, Stengel B, Tulloch AAD, Williams IH (2007) Computational investigation of mechanisms for ring-opening polymerization of ε-caprolactone: evidence for bifunctional catalysis by alcohols. J Chem Theory Comput 3(1):146–155

    Article  CAS  PubMed  Google Scholar 

  32. Premkumar M, Kaleeswaran D, Kaviyarasan G, Prasanth DA, Venkatachalam G (2019) Mono and dinuclear Cu(II) carboxylate complexes with pyridine and 1-methylimidazole as co–Ligands: synthesis, structure, antibacterial activity and catalytic nitroaldol reactions. ChemistrySelect 4(25):7507–7511

    Article  CAS  Google Scholar 

  33. Karmakar A, Goldberg I (2010) Flexible porphyrin tetracarboxylic acids for crystal engineering. CrystEngComm 12(12):4095–4100

    Article  CAS  Google Scholar 

  34. Vagin S, Ott AK, Rieger B (2007) Paddle-wheel zinc carboxylate clusters as building units for metal-organic frameworks. Chem Ing Tech 79(6):767–780

    Article  CAS  Google Scholar 

  35. Alcock NW, Culver J, Roe SM (1992) Secondary bonding. Part 15. Influence of lone pairs on co-ordination: comparison of diphenyl-tin(IV) and -tellurium(IV) carboxylates and dithiocarbamates. J Chem Soc, Dalton Trans 1477–1484

  36. Toyama N, Asano-Someda M, Kaizu Y (2003) EPR spectra of gable-type copper(II) porphyrin dimers in fluid solution: extraction of exchange interaction in weakly coupled doublet pairs. Mol Phys 101(6):733–742

    Article  CAS  Google Scholar 

  37. Attandoh NW, Ojwach SO, Munro OQ (2014) (Benzimidazolylmethyl)amine Zn(II) and Cu(II) carboxylate complexes: structural, mechanistic and kinetic studies of polymerisation reactions of ɛ-caprolactone. Eur J Inorg Chem 19:3053–3064

    Article  CAS  Google Scholar 

  38. de Miranda JL, Felcman J, Herbst MH, Vugman NV (2008) Magnetic coupling detected by EPR in a paddle-wheel copper(II) complex of the amino acid guanidinoacetic acid. Inorg Chem Commun 11(6):655–658

    Article  CAS  Google Scholar 

  39. Youngme S, Gunnasoot P (2004) Dinuclear copper(II) complexes with ferromagnetic and antiferromagnetic interactions mediated by a bridging oxalato group: structures and magnetic properties of [Cu2L4(μ-C2O4)](PF6)2(H2O)2 and [Cu2L2(μ-C2O4)(NO3)2((CH3)2NCOH)2] (L = di-2-pyridylamine). Transit Met Chem 29:840–846

    Article  CAS  Google Scholar 

  40. Garribba E, Micera G (2006) The determination of the geometry of Cu(II) complexes—an EPR spectroscopy experiment. J Chem Educ 83(8):1229–1232

    Article  CAS  Google Scholar 

  41. Abuhijleh AL (2010) Mononuclear copper (II) salicylate complexes with 1, 2-dimethylimidazole and 2-methylimidazole: synthesis, spectroscopic and crystal structure characterization and their superoxide scavenging activities. J Mol Struct 980(1–3):201–207

    Article  CAS  Google Scholar 

  42. Choi K-Y, Jeon Y-M, Ryu H, Oh J-J, Lim H-H, Kim M-W (2004) Synthesis and characterization of syn–anti carboxylate-bridged one-dimensional copper (II) complexes with bis (2-pyridylmethyl) amino acids. Polyhedron 23(6):903–911

    Article  CAS  Google Scholar 

  43. Wang Y-J, Lin Q-Y, Feng J, Wang N (2009) Diaquabis (norfloxacinato) manganese (II) 2, 2′-bipyridine solvate tetrahydrate. Acta Crystallogr Sect E Struct Rep Online 65(7):m806–m806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawamura H, Ono K, Tomono K, Miyamura K (2009) Restriction of apical coordination in the square-planar nickel (II) complexes of meso-1, 5, 8, 12-tetramethyl-1, 4, 8, 11-tetraazacyclotetradecane with axially oriented C-methyl groups. Inorg Chim Acta 362(13):4804–4808

    Article  CAS  Google Scholar 

  45. Batool SS, Gilani SR, Tahir MN, Rüffer T (2017) Synthesis, and structural characterization of mixed ligand copper (II) complexes of N,N,N′, N’-tetramethylethylenediamine incorporating carboxylates. J Mol Struct 1148:7–14

    Article  CAS  Google Scholar 

  46. Yadava K, Gallo G, Bette S, Mulijanto CE, Karothu DP, Park IH, Medishetty R, Naumov P, Dinnebier RE, Vittal JJ (2020) Extraordinary anisotropic thermal expansion in photosalient crystals. IUCrJ 7(Pt 1):83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stephens JC, Khan MA, Houser RP (2001) Copper (II) acetate complexes, [CuLm(OAc)2]n (L= HNPPh3), stable in the solid state either as a dimer (m = 1, n = 2) or a monomer (m = 2, n = 1). Inorg Chem 40(20):5064–5065

    Article  CAS  PubMed  Google Scholar 

  48. Akpan ED, Ojwach SO, Omondi B, Nyamori VO (2016) Structural and kinetic studies of the ring-opening polymerization of cyclic esters using N, N′ diarylformamidines Zn(II) complexes. Polyhedron 110:63–72

    Article  CAS  Google Scholar 

  49. Munzeiwa WA, Omondi B, Nyamori VO (2017) Synthesis and polymerization kinetics of ε-caprolactone and ʟ-lactide to low molecular weight polyesters catalyzed by Zn(II) and Cu(II) N-hydroxy-N, N′-diarylformamidine complexes. Polyhedron 138(14):295–305

    Article  CAS  Google Scholar 

  50. Munzeiwa WA, Nyamori VO, Omondi B (2018) Zn(II) and Cu(II) unsymmetrical formamidine complexes as effective initiators for ring-opening polymerization of cyclic esters. Appl Organomet Chem 32(4):e4247

    Article  CAS  Google Scholar 

  51. Dîrtu M, Boland Y, Gillard D, Tinant B, Robeyns K, Safin D, Devlin E, Sanakis Y, Garcia Y (2013) New mononuclear Cu(II) complexes and 1D chains with 4-amino-4H-1, 2, 4-triazole. Int J Molecul Sci 14(12):23597–23613

    Article  CAS  Google Scholar 

  52. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur Polym J 43(10):4053–4074

    Article  CAS  Google Scholar 

  53. Horvath IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107(6):2169–2173

    Article  CAS  PubMed  Google Scholar 

  54. Tseng H-C, Chiang MY, Lu W-Y, Chen Y-J, Lian C-J, Chen Y-H, Tsai H-Y, Lai Y-C, Chen H-Y (2015) A closer look at ɛ-caprolactone polymerization catalyzed by alkyl aluminum complexes: the effect of induction period on overall catalytic activity. Dalton Trans 44(26):11763–11773

    Article  CAS  PubMed  Google Scholar 

  55. Zikode M, Ojwach SO, Akerman MP (2016) Bis(pyrazolylmethyl)pyridine Zn(II) and Cu(II) complexes: molecular structures and kinetic studies of ring-opening polymerization of ε-caprolactone. J Mol Catal A Chem 413:24–31

    Article  CAS  Google Scholar 

  56. Ojwach SO, Zaca TP (2015) Ring-opening polymerization of lactides by (pyrazol-1-ylmethyl)pyridine Zn(II) and Cu(II) complexes: kinetics, mechanism and tacticity studies. S Afr J Chem 68:7-U21

    Article  CAS  Google Scholar 

  57. Akpan ED, Ojwach SO, Omondi B, Nyamori VO (2016) Zn(II) and Cu(II) formamidine complexes: structural, kinetics and polymer tacticity studies in the ring-opening polymerization of ε-caprolactone and lactides. New J Chem 40(4):3499–3510

    Article  CAS  Google Scholar 

  58. Wang J, Yao Y, Zhang Y, Shen Q (2009) Bridged bis (amidinate) ytterbium alkoxide and phenoxide: syntheses, structures, and their high activity for controlled polymerization of L-lactide and ε-caprolactone. Inorg Chem 48(2):744–751

    Article  CAS  PubMed  Google Scholar 

  59. Akintayo DC, Munzeiwa WA, Jonnalagadda SB, Omondi B (2021) Ring-opening polymerization of cyclic esters by 3- and 4-pyridinyl Schiff base Zn(II) and Cu(II) paddlewheel complexes: kinetic, mechanistic and tacticity studies. Arab J Chem 14(10):103313

    Article  CAS  Google Scholar 

  60. Liu Y-C, Ko B-T, Lin C-C (2001) A highly efficient catalyst for the “living” and “immortal” polymerization of ε-caprolactone and l-Lactide. Macromolecules 34(18):6196–6201

    Article  CAS  Google Scholar 

  61. Dubois P, Jacobs C, Jerome R, Teyssie P (1991) Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24(9):2266–2270

    Article  CAS  Google Scholar 

  62. Dubois P, Coulembier O, Raquez J-M (2009) Handbook of ring-opening polymerization. Wiley, New York

    Book  Google Scholar 

  63. Mazzeo M, Tramontano R, Lamberti M, Pilone A, Milione S, Pellecchia C (2013) Rare earth complexes of phenoxy-thioether ligands: synthesis and reactivity in the ring opening polymerization of cyclic esters. Dalton Trans 42(25):9338–9351

    Article  CAS  PubMed  Google Scholar 

  64. Pilone A, Lamberti M, Mazzeo M, Milione S, Pellecchia C (2013) Ring-opening polymerization of cyclic esters by phenoxy-thioether complexes derived from biocompatible metals. Dalton Trans 42(36):13036–13047

    Article  CAS  PubMed  Google Scholar 

  65. Demarque DP, Crotti AE, Vessecchi R, Lopes JL, Lopes NP (2016) Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat Prod Rep 33(3):432–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Kwa-Zulu Natal, School of Physics and Chemistry for an enabling environment for the research.

Author information

Authors and Affiliations

Authors

Contributions

DCA contributed to conceptualization, software, formal analysis, investigation methodology, data curation, and writing—original draft preparation. WAM contributed to visualization, investigation, validation, and reviewing and editing. SBJ contributed to supervision, resources, and project administration. BO contributed to conceptualization, resources, writing—reviewing and editing, supervision, and project administration.

Corresponding author

Correspondence to Bernard Omondi.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintayo, D.C., Munzeiwa, W.A., Jonnalagadda, S.B. et al. N3/4-pyridinyl Schiff base copper(II) benzoate complexes: synthesis, crystal structures and ring-opening polymerization studies. Transit Met Chem 47, 113–126 (2022). https://doi.org/10.1007/s11243-022-00494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00494-8

Navigation