Skip to main content
Log in

Metal-directed thiophene-carboxylate-based nickel(II) complexes as multifunctional electrochemical and fluorescent sensors for detecting different analytes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

To investigate the effect of the sites of S-atoms in thiophene carboxylates on the structures of coordination polymers, two thiophene-mono-carboxylic acids (2-Htpc = thiophene-2-carboxylic acid and 3-Htpc = thiophene-3-carboxylic acid) and a fluorescent active semi-rigid amide [N,N′-bis(3-methyl pyridine-3-yl)-2,6-naphthalenediamide (L)] were selected to combine with electrochemically active metal ions of Ni(II), and two new coordination polymers (CPs), namely [Ni0.5(L)0.5(2-tpc)](H2O)]∙1.5H2O (1) and [Ni0.5(L)0.5(3-tpc)](H2O)]∙1.5H2O (2), were obtained through traditional hydrothermal methods. The single-crystal X-ray diffraction analyses of the two CPs show that there are similar zigzag chains with the crossed-stacking modes. The two CPs can act as multifunctional electrochemical sensors to detect NO2, chloramphenicol, and L-ascorbic acid (AA) and fluorescent recognition of Fe3+ and Cr2O72−. The detection limits of 1 were 1.08 × 10−6, 1.18 × 10−4, and 1.06 × 10−4 for AA, Fe3+, and Cr2O72−. The corresponding values of 2 were 1.43 × 10−6, 2.06 × 10−4, and 2.06 × 10−4.

Graphical abstract

Two Ni(II) coordination polymers showing the same crossed-stacking modes display electrochemical and fluorescent sensing properties for metal ions and anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma DY, Zhang SY, Zhan SH, Feng LT (2019) Ind Eng Chem Res 58:20090

    Article  CAS  Google Scholar 

  2. Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG (2019) Acta Neuropathol 138:343–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng DD, Zhao YD, Wang XQ, Fang DD (2019) Dalton Trans 48:10892–10900

    Article  CAS  PubMed  Google Scholar 

  4. Yu XP, Yang C, Song P, Peng J (2020) Tungsten 2:194–202

    Article  Google Scholar 

  5. Bolisetty S, Peydayesh M, Mezzenga R (2019) Chem Soc Rev 48:463–487

    Article  CAS  PubMed  Google Scholar 

  6. Tian AX, Tian Y, Ning YL, Hou X (2016) Dalton Trans 45:13925–13936

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Peh SB, Wang J, Du YH (2019) Chem Commun 55:4727–4730

    Article  CAS  Google Scholar 

  8. Fu HR, Zhao Y, Xie T, Han ML (2018) J Mater Chem 6:6440

    CAS  Google Scholar 

  9. Tajik S, Beitollahi H, Nejad FG, Dourandish Z (2021) Ind Eng Chem Res 60:1112–1136

    Article  CAS  Google Scholar 

  10. Bieber VS, Ozcelik E, Cox HJ, Ottley CJ (2020) ACS Appl Mater Interfaces 12:52136–52145

    Article  CAS  PubMed  Google Scholar 

  11. Sandford RC, Exenberger A, Worsfold PJ (2007) Environ Sci Technol 41:8420–8425

    Article  CAS  PubMed  Google Scholar 

  12. Shang XN, Kang HH, Chen YQ, Abdumutallip M (2021) Environ Sci Technol 55:9794–9804

    Article  CAS  PubMed  Google Scholar 

  13. Cabello NF, González PR, Castillo Á, Malherbe J (2012) Environ Sci Technol 46:12542–12549

    Article  Google Scholar 

  14. Shakya R, Navarre DA (2006) J Agric Food Chem 54:5253–5260

    Article  CAS  PubMed  Google Scholar 

  15. Frenich AG, Torres MEH, Vega AB, Vidal JLM (2005) J Agric Food Chem 53:7371–7376

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton EM, Young SD, Bailey EH, Humphrey OS (2021) Environ Sci Technol 55:2422–2429

    Article  CAS  PubMed  Google Scholar 

  17. Yang SL, Liu WS, Li G, Bu R (2020) Inorg Chem 59:15421–15429

    Article  CAS  PubMed  Google Scholar 

  18. Cui JW, Hou SX, Li YH, Cui GH (2017) Dalton Trans 46:16911–16924

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Gu ZJ, Luo W, Wu L (2018) Transition Met Chem 43:673–681

    Article  CAS  Google Scholar 

  20. Chen C, Xiong DK, Gu ML, Lu CX (2020) ACS Appl Mater Interfaces 12:35365–35374

    Article  CAS  PubMed  Google Scholar 

  21. Chai HM, Zhang GQ, Jiao CX, Ren YX (2020) ACS Omega 5:33039–33046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. JindalS, Maka VK, Moorthy JN (2020) J Mater Chem C 8: 11449−11456

  23. Wu XQ, Feng PQ, Guo ZQ, Wei XH (2020) Langmuir 36:14123–14129

    Article  CAS  PubMed  Google Scholar 

  24. Song YP, Duan FH, Zhang S, Tian JY (2017) J Mater Chem A 5:19378–19389

    Article  CAS  Google Scholar 

  25. Sheta SM, El-Sheikh SM, Osman DI, Salem AM (2020) Dalton Trans 49:8918–8926

    Article  CAS  PubMed  Google Scholar 

  26. Saraf M, Rajakb R, Mobin SM (2016) J Mater Chem A 4:16432–16445

    Article  CAS  Google Scholar 

  27. Wang XY, Zhang J, Wei YA, Xing TY (2020) Analyst 145:1933–1942

    Article  CAS  PubMed  Google Scholar 

  28. Nagarkar SS, Desai AV, Samanta P, Ghosh SK (2015) Dalton Trans 44:15175–15180

    Article  CAS  PubMed  Google Scholar 

  29. Bhowal S, Ghosh A (2021) RSC Adv 11:27787–27800

    Article  CAS  Google Scholar 

  30. Tian AX, Yang ML, Fu YB, Ying J (2019) Inorg Chem 58:4190–4200

    Article  CAS  PubMed  Google Scholar 

  31. Wang C, Ying J, Mou HC, Tian AX (2020) Inorg Chem Front 7:3882–3894

    Article  CAS  Google Scholar 

  32. Yazigi FJ, Wilson C, Long DL, Forgan RS (2017) Cryst Growth Des 17:4739–4748

    Article  CAS  Google Scholar 

  33. Jürgens E, Back O, Mayer JJ, Heinze K (2016) Z Naturforsch 71:1011–1018

  34. Gurudevaru C, Gopalakrishnan M, Senthilkumar K, Hemachandran H (2018) Applied Organometallic Chem 32:3998

    Article  Google Scholar 

  35. Subudhi S, Mansingh S, Swain G, Behera A (2019) Inorg Chem 58:4921–4934

    Article  CAS  PubMed  Google Scholar 

  36. Xu MZ, Li Q, Lv YY, Yuan ZM (2020) Tungsten 2:203–213

    Article  Google Scholar 

  37. Buschbaum KM, Beuerle F, Feldmann C (2015) Micropor Mesopor Mat 216:171–199

    Article  Google Scholar 

  38. Xue Z, Jia L, Zhu RR, Du L (2020) J Electroanal Chem 858:113783

    Article  CAS  Google Scholar 

  39. Wang XL, Hu HL, Liu GC, Lin HY (2010) Chem Commun 46:6485–6487

    Article  CAS  Google Scholar 

  40. Zhou Y, Hu Q, Yu F, Ran GY (2020) J Am Chem Soc 142:20313–20317

    Article  CAS  Google Scholar 

  41. Du HJ, Wang CH, Li Y, Niu YY (2015) RSC Adv 5:74065–74074

    Article  CAS  Google Scholar 

  42. Tian AX, Ni HP, Ji XB, Tian Y (2017) RSC Adv 7:5774–5781

    Article  CAS  Google Scholar 

  43. Wang XL, Xiong Y, Liu GC, Lin HY (2018) Dalton Trans 47:9903–9911

    Article  CAS  PubMed  Google Scholar 

  44. Zheng YP, Tan Y, Zhou WL, Hao XR (2021) Inorg Chem 60:12323–12330

    Article  CAS  PubMed  Google Scholar 

  45. Argoubi W, Rabti A, Aoun SB, Raouafi N (2019) RSC Adv 9:37384–37390

    Article  CAS  Google Scholar 

  46. Su CH, Sun CL, Liao YC (2017) ACS Omega 2:4245–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin HY, Wang XL, Hu HL, Chen BK (2009) Solid State Sci 11:643–650

    Article  CAS  Google Scholar 

  48. Liu GC, Chen YQ, Wang XL, Chen BK (2009) J Solid State Chem 182:566–573

    Article  CAS  Google Scholar 

  49. Huang QY, Tang WP, Yang Y, Liu W (2014) Z Naturforsch 69b:423–431

    Article  Google Scholar 

  50. Wang KM, Du L, Ma YL, Zhao QH (2016) Transition Met Chem 41:573–580

    Article  CAS  Google Scholar 

  51. Gao LL, Zhao QN, Li MM, Fan LM (2017) CrystEngComm 19:6651–6659

    Article  CAS  Google Scholar 

  52. Xia YP, Li YW, Li DC, Yao QX (2015) CrystEngComm 17:2459–2463

    Article  CAS  Google Scholar 

  53. Xiao Y, Li B, You ZX, Xing YH (2021) J Mater Chem C 9:3193–3203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21401010, 21901018), Education Department, and the Natural Science Foundations of Liaoning province (LJ2020008, 2021-MS-312). We thank Professor Ninghai Hu (Changchun Institute of Applied Chemistry) for refining the crystal data structures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guocheng Liu, Xiaohui Li or Yongqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Mu, Y., Zhao, J. et al. Metal-directed thiophene-carboxylate-based nickel(II) complexes as multifunctional electrochemical and fluorescent sensors for detecting different analytes. Transit Met Chem 46, 613–621 (2021). https://doi.org/10.1007/s11243-021-00479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00479-z

Navigation