Skip to main content
Log in

A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Orchids of the genus Dendrobium hold a high economical value in the international markets both as pot plants or cut flowers, and for the production of some metabolites with antioxidant and anti-tumoral activities. Manipulating ploidy levels of Dendrobium species is one of the possible methods to develop new varieties with increased ornamental value and a higher production of secondary metabolites. In this work, we present a new and fast flow cytometry approach to obtain and select Dendrobium phalaenopsis × Dendrobium loddigesii polyploids, through an early in vitro screening on protocorm like bodies (PLBs) after antimitotic treatment. Our approach allows the identification of the best time of treatment on control PLBs and the assessment of best conditions for polyploid recovery just one month after treatments, by using Cycle Value. We were able to discard about the two-third of the unchanged material by drastically reducing the explants to work with and the corresponding costs. Different conditions, regarding concentrations and exposition time, were tested using colchicine or amiprophos-methyl (APM). A high polyploids recovery, up to 80%, were obtained with both antimitotic agents, and those materials were further characterized by liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS), to identify independent polyploids explants with increased levels in high-value molecules as shihunidine and hircinol, together with stochastic events and genotype-specific metabolite fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APM:

Amiprophos-methyl

COL:

Colchicine

FCM:

Flow cytometry

HESI:

Heated electrospray ionization

LC-HRMS:

Liquid chromatography-high resolution mass spectrometry

MS:

Murashige and Skoog medium

NDM:

New Dogashima medium

PDP:

Partially duplicated polyploids

PLBs:

Protocorm like bodies

PPE:

Progressively partially endoreduplication

TT:

Total tetraploid

References

  • Acanda Y, Martínez Ó, González MV, Prado MJ, Rey M (2015) Highly efficient in vitro tetraploid plant production via colchicine treatment using embryogenic suspension cultures in grapevine (Vitis vinifera cv. Mencía). Plant Cell Tiss Organ Cult 123:547–555

    Article  CAS  Google Scholar 

  • Arditti J (1992) Fundamentals of orchid biology. Wiley, New York

    Google Scholar 

  • Atichart P (2013) Polyploid Induction by colchicine treatments and plant regeneration of Dendrobium chrysotoxum. Thai Thai J Agric Sci 46(1):59–63

    Google Scholar 

  • Atichart P, Bunnag S (2007) Polyploid induction in Dendrobium secundum (Bl.) Lindl. by in vitro techniques. Thai J Agric Sci 40(1–2):91–95

    Google Scholar 

  • Banyai W, Sangthong R, Karaket N, Inthima P, Mii M, Supaibulwatana K (2010) Overproduction of artemisinin in tetraploid Artemisia annua L. Plant Biotechnol 27(5):427–433

    Article  Google Scholar 

  • Barow M, Meister A (2003) Endopoliploidy in seed plants is differently correlated to systematic, organ, life strategy and genome size. Plant Cell Environ 26:571–184

    Article  Google Scholar 

  • Blasco M, Badenes ML, Naval MM (2015) Colchicine-induced polyploidy in loquat (Eriobotrya japonica (Thunb.) Lindl.). Plant Cell Tiss Organ Cult 120:453–461

    Article  CAS  Google Scholar 

  • Bory S, Catrice O, Brown S, Leitch IJ, Gigant R, Chiroleu F, Grisoni M, Duval MF, Besse P (2008) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51:816–826

    Article  CAS  PubMed  Google Scholar 

  • Bulpitt CJ (2005) The uses and misuses of orchids in medicine. Q J Med 98(9):625–631

    Article  CAS  Google Scholar 

  • Bunnag S, Hongthongkham J (2015) Polyploid induction of Dendrobium draconis RCHB. Acta Hortic 1087:445–451

    Article  Google Scholar 

  • Chaicharoen S, Saejew K (1981) Autopolyploidy in Dendrobium phalaenopsis. J Sci Soc Thail 7:25–32

    Article  Google Scholar 

  • Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, Van den Berg C, Schuiteman A (2015) An update classification of Orchidaceae. Bot J Linn Soc 177(2):151–174

    Article  Google Scholar 

  • Chen C (2016) Cost analysis of plant micopropagation of Phalaenopsis. Plant Cell Tissue Organ Cult. doi 10.1007/s11240-016-0987-4

    Google Scholar 

  • Chen WH, Chen HH (2007) Orchid biotechnology. Wiley, New York

    Book  Google Scholar 

  • Chen CC, Wu LG, Ko FN, Teng CM (1994) Antiplatelet aggregation principles of Dendrobium loddigesii. J Nat Prod 57(9):1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Chen WH, Tang CY, Kao YL (2009) Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell Tissue Organ Cult 98(2):229–238

    Article  CAS  Google Scholar 

  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and Antimicrobial and Plant-Growth-Promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29(3):328–337

    Article  Google Scholar 

  • Chen WH, Tang CY, Lin TY, Weng YC, Kao LY (2011) Changes in endopolyploidy pattern of different tissues in diploid and tetraploid Phalaenopsis Aphrodite subsp. Formosana (Orchidaceae). Plant Sci 18:31–38

    Article  Google Scholar 

  • Dhawan OP, Lavania UC (1996) Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87(2):81–89

    Article  CAS  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissue in vitro. Plant Cell Tissue Organ Cult 104(3):359–373

    Article  Google Scholar 

  • Diretto G, Al-babili S, Tavazza R, Scossa F, Papacchioli V, Migliore M, Giuliano G (2010) Trascriptional-metabolic networks in beta-carotene-enriched potato tubers: the long and winding road to the Golden phenotype. Plant Physiol 154(2):899–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007a) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244 a)

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007b) Flow cytometry with plant cell: analysis of genes, chromosomes and genomes. Wiley, Weinheim

    Book  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the Orchid family. Discorides Press, Portland

    Google Scholar 

  • Fasano C, Diretto G, Aversano R, D’Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D (2016) Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol 210(4):1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Galdiano RF, de Macedo Lemos EG, de Faria RT, Vendrame WA (2014) Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds. Appl Biochem Biotechnol 172(5):2521–2529

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Wu SQ, Piao XC, Park SY, Lian ML (2014) Micropropgation of Cymbidium sinense using continuous and temporary airlift bioreactor systems. Acta Physiol Plant 36:117–124

    Article  CAS  Google Scholar 

  • Griesbach J (1981) Colchicine-induced polyploidy in Phalaenopsis orchids. Plant Cell Tissue Organ Cult 1:103–107

    Article  CAS  Google Scholar 

  • Griesbach J (1985) Polyploidy in Phalaenopsis orchid improvement. J Hered 76(1):74–75

    Article  Google Scholar 

  • Griesbach J (2002) Development of Phalaenopsis orchids for the mass-market. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 458–465

    Google Scholar 

  • Gutierrez RMP (2010) Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J Med Plant Res 4(8):592–638

    CAS  Google Scholar 

  • Halberstein RA (2005) Medicinal plants: historical and cross-cultural usage patterns. Ann Epidemiol 15(9):686–699

    Article  PubMed  Google Scholar 

  • Ho CK, Chen CC (2003) Mascatilin from the orchid Dendrobium loddigesii is a potential anticancer agent. Cancer Invest 21(5):729–736

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM (2011) Therapeutic orchids: traditional uses and recent advances-an overview. Fitoterapia 82(2):102–140

    Article  PubMed  Google Scholar 

  • Hossain MM, Kant R, Van PT, Winarto B, Zeng S, Teixera da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32(2):69–139

    Article  CAS  Google Scholar 

  • Hribova E, Holusova K, Travnicek P, Petrovska B, Ponert J, Simkova H, Kubatova B, Jersakova J, Curn V, Suda J, Dolezel J, Vrana J (2016) The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. Genome Biol Evol 8(6):1996–2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito M, Matsuzaki K, Wang J, Daikonya A, Wang NL, Yao XS, Kitanaka S (2010) New phenanthrenes and stilbenes from Dendrobium loddigesii. Chem Pharm Bull 58(5):628–633

    Article  CAS  PubMed  Google Scholar 

  • Jones WE, Kuehnle AR (1998) Ploidy identification using flow cytometry in tissues of Dendrobium species and cultivars. Lindleyana 13:11–18

    Google Scholar 

  • Khosravi P, Kermani MJ, Nematzadeh GA, Bihamta MR, Yokoya K (2008) Role of mitotic inihibitors and genotype on chromosome doubling of Rosa. Euphytica 160(2):267–275

    Article  CAS  Google Scholar 

  • Khosravi AR, Kadir MA, Kadzemin SB, Zaman FQ, De Silva AE (2009) RAPD analysis of colchicine induced variation of Dendrobium Serdang beauty. Afr J Biotechnol 8(8):1455–1465

    CAS  Google Scholar 

  • Lam Y, Ng TB, Yao RM, Shi J, Xu K, Sze SCW, Zhang KY (2015) Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium plants. Evid Based Complement Altern Med. doi: 10.1155/2015/841752

    Google Scholar 

  • Lavania UC (2005) Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genet Resour 3(2):170–177

    Article  CAS  Google Scholar 

  • Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differentially influenced body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:539–549

    Article  CAS  PubMed  Google Scholar 

  • Lee YI, Hsu ST, Yeung EC (2013) Orchid protocorm-like bodies are somatic embryos. Am J Bot 100:2121–2131

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploidy plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genomeupon allopolyploidization. Biol J Linn Soc 82:607–613

    Article  Google Scholar 

  • Li MF, Hirata Y, Xu GJ, Niwa M, Wu HM (1991) Studies on the chemical constituents of Dendrobium loddigesii rolfe. Acta Pharm Sin 26(4):307–310

    CAS  Google Scholar 

  • Luckett DJ (1989) Colchicine mutagenesis is associated with substantial heritable variation in cotton. Euphytica 42(1–2):177–182

    Article  CAS  Google Scholar 

  • Melchineger AE, Molenaar WS, Mirdita V, Schipprack W (2016) Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci 56(2):559–569

    Article  Google Scholar 

  • Miguel TP, Leonhardt KW (2011) in vitro polyploid induction of orchids using oryzalin. Sci Hortic 130(1):314–319

    CAS  Google Scholar 

  • Mishra BK, Phatak S, Sharma A, Trivedi PK, Shukla S (2010) Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S Afr J Bot 76(3):447–452

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nagl W (1972) Evidence of DNA amplification in orchid Cymbidium in vitro. Cytobios 5:144–155

    Google Scholar 

  • Nakasone HY, Kamemoto H (1961) Artificial induction of polyploidy in orchids by the use of colchicine. Hawaii Agri Exp Stn Tech Bull 42:1–27

  • Ng TB, Liu J, Wong JH, Ye X, Sze SCW, Tong Y, Zhang KY (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93(5):1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry 73A:581–598

    Article  CAS  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tissue Organ Cult 104(3):329–341

    Article  Google Scholar 

  • Pfosser A, Amon A, Lelley T, Heberle-Bors E (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393

    Article  CAS  PubMed  Google Scholar 

  • Rambla JL, Trapero-Mozos A, Diretto G, Rubio Moraqa A, Granell A, Gomez-Gomez L, Ahrazem O (2016) Gene-Metabolite Networks of volatile metabolism in Airen and Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet production. Front Plant Sci 7:1619. doi: 10.3389/fpls.2016.01619

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarathum S, Hegele M, Tantiviwat S, Nanakorn M (2010) Effect of concentration and duration of colchicine treatment on polyploidy induction in Dendrobium scabrilingue L. Eur J Hortic Sci 75(3):123–127

    CAS  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    Article  CAS  PubMed  Google Scholar 

  • Schweizer D, Nagl W (1976) Heterochromatin diversity in Cymbidium and its relationship to differential DNA replication. Exp Cell Res 98:411–423

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker M, Hamilton B, Dairkee SH, Cohen I, Campbell MJ (2005) in vitro anticancer activity of twelve Chinese medicinal herbs. Phytother Res 19:649–651

    Article  PubMed  Google Scholar 

  • Singh S, Singh AK, Kumar S, Kumar M, Pandey PK, Singh MCK (2012) Medicinal properties and uses of orchids: a concise review. Elixir Appl Botany 52:11627–11634

    Google Scholar 

  • Takamiya T, Wongsawad P, Tajima N, Shioda N, Lu JF, Wen CL, Wu JB, Handa T, Iijima H, Kitanaka S, Yukawa T (2011) Identification of Dendrobium species used for herbal medicines based on ribosomal DNA internal transcribed spacer sequence. Biol Pharm Bull 34:779–782

    Article  CAS  PubMed  Google Scholar 

  • Tang CY, Chen WH (2007) Breeding and development of new varieties in Phalaenopsis. In: Chen WH, Chen HH (eds) Orchid Biotechnology. World Scientific, Hong Kong, pp 1–22

    Google Scholar 

  • Teixeira da Silva JA, Giang DTT, Dobranszki J, Zeng SJ, Tanaka M (2014) Ploidy analysis of Cymbidium, Phalaenopsis, Dendrobium and Paphiopedillum (Orchidaceae) and Spathiphyllum and Syngonium (Araceae). Biologia 69(6):750–755

    Article  Google Scholar 

  • Teixera da Silva JA, Cardoso JC, Dobranszki J, Zeng S (2015) Dendrobium micropropagation: a review. Plant Cell Rep 34(5):671–704

    Article  Google Scholar 

  • Thao NTP, Ureshino K, Miyajima I, Ozaki Y, Okubo H (2003) Induction in tetraploids in ornamental Alocasia through colchicine and oryzaline treatments. Platnt Cell Tissue Organ Cult 72:19–25

    Article  CAS  Google Scholar 

  • Tokuara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13(1):7–11

    Google Scholar 

  • Travnicek P, Kubatova B, Curn V, Rauchova J, Krajnikova E, Jesakova J, Suda J (2011) Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot 107(1):77–87

    Article  PubMed  Google Scholar 

  • Travnicek P, Ponert J, Urfus T, Jersakova J, Vrana J, Hibrova E, Dolezel J, Suda J (2015) Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry A 87(10):958–966

    Article  CAS  PubMed  Google Scholar 

  • Vichiato MRM, Vichiato M, Pasqual M, Rodrigues FA, De Castro M (2014) Morphological effects of induced polyploidy in Dendrobium nobile Lindl (Orchidaceae). Crop Breed Appl Biotechnol 14(3):154–159

    Article  Google Scholar 

  • Wojcikowski K, Gobe G (2014) Animal studies on medicinal herbs: predictability, dose conversion and potential value. Phytother Res 28:22–27

    Article  PubMed  Google Scholar 

  • Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX (2011) Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J Biomed Biotechnol. doi: 10.1155/2011/793198

    Google Scholar 

  • Xu D, Chu S, Zheng M, Pan Y, Qian G, Li L (2016) Creating novel tetraploid germoplasm with high salt tolerance and ion utilization in Dendrobium nobile Lindl. Nanosci Nanotechnol Lett 8:1127–1134

    Article  Google Scholar 

  • Yang F, Wei NN, Gao R, Piao XC, Lian ML (2015) Effect of several medium factors on polysaccharide and alkaloid accumulation in protocorm-like bodies of Dendrobium candidum during bioreactor culture. Acta Physiol Plant 37:94

    Article  Google Scholar 

  • Zeng SJ, Hu SH (2004) The Dendrobium Orchids. Guangdong Science and Technology Press, Guangzhou

    Google Scholar 

  • Zha XQ, Luo JP, Jiang ST, Wang JH (2007) Enhancement of polysaccharide production in suspension cultures of protocorm-like bodies from Dendrobium huoshanense by optimization of medium compositions and feeding of sucrose. Process Biochem 42(1):344–351

    Article  CAS  Google Scholar 

  • Zhou H-w, Zeng W-d, Yan H-b (2017) in vitro induction of tetraploid cassava variety Xinxuan 048 using colchicines. Plant Cell Tiss Organ Cult 128: 723–729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NOVAORCHID Project D. M. 11074/7643/09, funded by Italian Ministry of Agriculture, Food and Forestry Policies. The Authors thank Dimitri Paskulov and Benedetto Aracri (Floramiata SpA, Siena, Italy) for providing seeds of the Dendrobium hybrid. Authors are also very grateful to Raffaela Tavazza (ENEA Casaccia Research Center, Biotechnology and Agroindustry Division, Rome, Italy) for the reading of the manuscript and her valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

VG, LN, SL: Conceived and designed the experiments. VG, AF, DG, LN, GD, SL: Performed the experiment. VG, LN, GD: Analysed the data. VG, DG, GD, SL: Wrote the paper.

Corresponding author

Correspondence to V. Grosso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Danny Geelen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2017_1310_MOESM1_ESM.xlsx

Supplemental Table 1. LC-HRMS of secondary metabolites in the control and in TT/PDP polyploids of Dendrobium PLBs. Data are expressed as fold on the internal standard level (formononetin). For details, see Materials and Methods (XLSX 44 KB)

11240_2017_1310_MOESM2_ESM.xlsx

Supplemental Table 2. LC-HRMS of secondary metabolites in the control and in TT/PDP polyploids of Dendrobium PLBs. Data are expressed as fold on the levels of the corresponding metabolites in control. Red and green boxed indicate, respectively, statistically significant over- and down-accumulated metabolites in a TT/PDP polyploid over the control. For details, see Materials and Methods (XLSX 46 KB)

11240_2017_1310_MOESM3_ESM.xlsx

Supplemental Table 3. Metabolite-metabolite correlation matrix in the control and in TT/PDP polyploids of Dendrobium PLBs. Each square represents the Pearson correlation coefficient between the metabolite heading the column with the metabolite heading the row. Hues of red and green indicate, respectively, the strength of the positive and negative correlation. For details, see Materials and Methods (XLSX 53 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosso, V., Farina, A., Giorgi, D. et al. A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell Tiss Organ Cult 132, 57–70 (2018). https://doi.org/10.1007/s11240-017-1310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1310-8

Keywords

Navigation