Skip to main content

Advertisement

Log in

MicroRNA-29b reduces myocardial ischemia–reperfusion injury in rats via down-regulating PTEN and activating the Akt/eNOS signaling pathway

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Reperfusion may cause injuries to the myocardium in ischemia situation, which is called ischemia/reperfusion (I/R) injury. The study aimed to explore the roles of microRNA-29b (miR-29b) in myocardial I/R injury. Myocardial I/R injury rat model was established. Differentially expressed miRNAs between the model rats and the sham-operated rats were analyzed. miR-29b expression in myocardial tissues was measured. Gain-of-function of miR-29b was performed, and then the morphological changes, infarct size, myocardial function, oxidative stress, and the cell apoptosis in myocardial tissues were detected. The target relation between miR-29b and PTEN was detected through bio-information prediction and dual luciferase reporter gene assay. Activation of Akt/eNOS signaling was detected. H9C2 cells were subjected to hypoxia/reoxygenation treatment to perform in vitro experiments. I/R rats presented severe inflammatory infiltration, increased infarct size and cell apoptosis, increased oxidative stress and decreased myocardial function. miR-29b was downregulated in I/R rats, and up-regulation of miR-29b reversed the above changes. miR-29b directly bound to PTEN, and overexpression of miR-29b reduced PTEN expression level and increased the protein levels of p-Akt/Akt and p-eNOS/eNOS. In vivo results were confirmed in in vitro experiments. This study provided evidence that miR-29b could alleviate the myocardial I/R injury in vivo and in vitro by inhibiting PTEN expression and activating the Akt/eNOS signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

I/R:

Ischemia/reperfusion

miR-29b:

MicroRNA-29b

miRNAs/miRs:

MicroRNAs

3′UTRs:

3′ Untranslated regions

MI:

Myocardial infarction

PTEN:

Phosphatase and tensin homolog

PI3K:

Phosphatidylinositol-3 kinase

eNOS:

Endothelial nitric oxide synthase

NC:

Negative control

ECG:

Electrocardiographic

HE:

Hematoxylin–eosin

TUNEL:

Transferase dUTP nick end labeling

TTC:

Triphenyltetrazolium chloride

LVSP:

Left ventricular systolic pressure

LVEDP:

Left ventricular end-diastolic pressure

IgG:

Immunoglobulin G

PC:

Positive content

PBS:

Phosphate buffer saline

DAPI:

Diamidino-2-phenylindole

CK:

Creatine kinase

LDH:

Lactate dehydrogenase

OD:

Optical density

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

RIPA:

Radio-Immunoprecipitation assay

PTEN-WT:

PTEN 3′UTR wile type

ATCC:

American Type Culture Collection

CCK-8:

Cell Counting Kit-8

ANOVA:

Analysis of variance

References

  1. Zhou T, Chuang CC, Zuo L (2015) Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int 2015:864946. https://doi.org/10.1155/2015/864946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qian W, Xiong X, Fang Z, Lu H, Wang Z (2014) Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury. Evid Based Complement Alterna Med 2014:107501. https://doi.org/10.1155/2014/107501

    Article  Google Scholar 

  3. Aragon JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB, Gundewar S, Jha S, Calvert JW, Barouch LA, Lavu M, Wright HM, Lefer DJ (2011) Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol 58(25):2683–2691. https://doi.org/10.1016/j.jacc.2011.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z, Li Y, Chen W, Yi D, Yu S (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55(3):275–286. https://doi.org/10.1111/jpi.12070

    Article  CAS  PubMed  Google Scholar 

  5. Ferreira-Gonzalez I (2014) The epidemiology of coronary heart disease. Rev Esp Cardiol 67(2):139–144. https://doi.org/10.1016/j.rec.2013.10.002

    Article  PubMed  Google Scholar 

  6. Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, Tersteeg C, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121(1):80–90. https://doi.org/10.1161/CIRCULATIONAHA.109.880187

    Article  CAS  PubMed  Google Scholar 

  7. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Investig 123(1):92–100. https://doi.org/10.1172/JCI62874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee FY, Shao PL, Wallace CG, Chua S, Sung PH, Ko SF, Chai HT, Chung SY, Chen KH, Lu HI, Chen YL, Huang TH, Sheu JJ, Yip HK (2018) Combined therapy with SS31 and mitochondria mitigates myocardial ischemia-reperfusion injury in rats. Int J Mol Sci. https://doi.org/10.3390/ijms19092782

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sim J, Ahn H, Abdul R, Kim H, Yi KJ, Chung YM, Chung MS, Paik SS, Song YS, Jang K (2015) High microRNA-370 expression correlates with tumor progression and poor prognosis in breast cancer. J Breast Cancer 18(4):323–328. https://doi.org/10.4048/jbc.2015.18.4.323

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seo M, Choi JS, Rho CR, Joo CK, Lee SK (2015) MicroRNA miR-466 inhibits lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci 22:3. https://doi.org/10.1186/s12929-014-0104-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fic P, Kowalczuk K, Grabarska A, Stepulak A (2014) MicroRNA–a new diagnostic tool in coronary artery disease and myocardial infarction. Postep Hig Med Dosw 68:410–418. https://doi.org/10.5604/17322693.1100348

    Article  Google Scholar 

  12. Dai Y, Mao Z, Han X, Xu Y, Xu L, Yin L, Qi Y, Peng J (2019) MicroRNA-29b-3p reduces intestinal ischaemia/reperfusion injury via targeting of TNF receptor-associated factor 3. Br J Pharmacol 176(17):3264–3278. https://doi.org/10.1111/bph.14759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang Z, Lu L, Jiang T, Zhang S, Shen Y, Zheng Z, Zhao A, Gao R, Li R, Zhou S, Liu J (2018) miR-29b affects neurocyte apoptosis by targeting MCL-1 during cerebral ischemia/reperfusion injury. Exp Ther Med 16(4):3399–3404. https://doi.org/10.3892/etm.2018.6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang T, Xue X, Peng H (2019) Therapeutic delivery of miR-29b enhances radiosensitivity in cervical cancer. Mol Ther 27(6):1183–1194. https://doi.org/10.1016/j.ymthe.2019.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruan H, Li J, Ren S, Gao J, Li G, Kim R, Wu H, Wang Y (2009) Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. J Mol Cell Cardiol 46(2):193–200. https://doi.org/10.1016/j.yjmcc.2008.10.021

    Article  CAS  PubMed  Google Scholar 

  16. Cheng Y, Sun T, Yin C, Wang S, Li Z, Tao Y, Zhang J, Li Z, Zhang H (2019) Downregulation of PTEN by sodium orthovanadate protects the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment. J Cell Biochem 120(3):3709–3715. https://doi.org/10.1002/jcb.27651

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Feng J, Cheng B, Lu Q, Chen X (2018) Oleanolic acid protects against oxidative stressinduced human umbilical vein endothelial cell injury by activating AKT/eNOS signaling. Mol Med Rep 18(4):3641–3648. https://doi.org/10.3892/mmr.2018.9354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou Q, Meng G, Teng F, Sun Q, Zhang Y (2018) Effects of astragalus polysaccharide on apoptosis of myocardial microvascular endothelial cells in rats undergoing hypoxia/reoxygenation by mediation of the PI3K/Akt/eNOS signaling pathway. J Cell Biochem 119(1):806–816. https://doi.org/10.1002/jcb.26243

    Article  CAS  PubMed  Google Scholar 

  19. Ye JM, Deng T, Zhang JB (2009) Influence of paeonol on expression of COX-2 and p27 in HT-29 cells. World J Gastroenterol 15(35):4410–4414. https://doi.org/10.3748/wjg.15.4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribeiro J, Marinho-Dias J, Monteiro P, Loureiro J, Baldaque I, Medeiros R, Sousa H (2015) miR-34a and miR-125b expression in HPV infection and cervical cancer development. Biomed Res Int 2015:304584. https://doi.org/10.1155/2015/304584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu YB, Ding N, Yi HL, Li ZQ (2019) The expression of overexpressed PTEN enhanced IR-induced apoptosis of myocardial cells. Eur Rev Med Pharmacol Sci 23(10):4406–4413. https://doi.org/10.26355/eurrev_201905_17948

    Article  PubMed  Google Scholar 

  22. Liu Q, Li Z, Liu Y, Xiao Q, Peng X, Chen Q, Deng R, Gao Z, Yu F, Zhang Y (2018) Hydromorphine postconditioning protects isolated rat heart against ischemia-reperfusion injury via activating P13K/Akt/eNOS signaling. Cardiovasc Ther 36(6):e12481. https://doi.org/10.1111/1755-5922.12481

    Article  CAS  PubMed  Google Scholar 

  23. Raedschelders K, Ansley DM, Chen DD (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 133(2):230–255. https://doi.org/10.1016/j.pharmthera.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Maehata Y, Miyagawa S, Sawa Y (2012) Activated protein C has a protective effect against myocardial I/R injury by improvement of endothelial function and activation of AKT1. PLoS ONE 7(8):e38738. https://doi.org/10.1371/journal.pone.0038738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ran X, Diao JX, Sun XG, Wang M, An H, Huang GQ, Zhao XS, Ma WX, Zhou FH, Yang YG, Miao CM (2015) Huangzhi oral liquid prevents arrhythmias by upregulating caspase-3 and apoptosis network proteins in myocardial ischemia-reperfusion injury in rats. Evid Based Complement Alternat Med 2015:518926. https://doi.org/10.1155/2015/518926

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang ZQ, Xu W, Wu JL, Lu X, Chen XM (2019) MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. Life Sci 232:116619. https://doi.org/10.1016/j.lfs.2019.116619

    Article  CAS  PubMed  Google Scholar 

  27. Wei Z, Qiao S, Zhao J, Liu Y, Li Q, Wei Z, Dai Q, Kang L, Xu B (2019) miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. Life Sci 232:116632. https://doi.org/10.1016/j.lfs.2019.116632

    Article  CAS  PubMed  Google Scholar 

  28. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105(35):13027–13032. https://doi.org/10.1073/pnas.0805038105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Monaghan MG, Holeiter M, Brauchle E, Layland SL, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K (2018) Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng Part A 24(1–2):57–67. https://doi.org/10.1089/ten.TEA.2016.0527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K (2008) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 373(1):30–35. https://doi.org/10.1016/j.bbrc.2008.05.165

    Article  CAS  PubMed  Google Scholar 

  31. Mazhar F, Tariq SR, Bashir F (2011) Age- and gender-based studies of trace metal levels and various enzymes associated with myocardial infarction. Biol Trace Elem Res 140(2):139–150. https://doi.org/10.1007/s12011-010-8693-2

    Article  CAS  PubMed  Google Scholar 

  32. Jin H, Wang Y, Wang X, Sun Y, Tang C, Du J (2013) Sulfur dioxide preconditioning increases antioxidative capacity in rat with myocardial ischemia reperfusion (I/R) injury. Nitric Oxide 32:56–61. https://doi.org/10.1016/j.niox.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Amani M, Jeddi S, Ahmadiasl N, Usefzade N, Zaman J (2013) Effect of HEMADO on Level of CK-MB and LDH enzymes after ischemia/reperfusion injury in isolated rat heart. Bioimpacts 3(2):101–104. https://doi.org/10.5681/bi.2013.003

    Article  CAS  PubMed  Google Scholar 

  34. Fan Y, Lu H, An L, Wang C, Zhou Z, Feng F, Ma H, Xu Y, Zhao Q (2016) Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction. Environ Toxicol Pharmacol 43:13–20. https://doi.org/10.1016/j.etap.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  35. Lv J, Liang Y, Tu Y, Chen J, Xie Y (2018) Hypoxic preconditioning reduces propofol-induced neuroapoptosis via regulation of Bcl-2 and Bax and downregulation of activated caspase-3 in the hippocampus of neonatal rats. Neurol Res 40(9):767–773. https://doi.org/10.1080/01616412.2018.1477545

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Zhang D, Yu L, Dong H (2019) Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered 10(1):121–132. https://doi.org/10.1080/21655979.2019.1605812

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu H, Jing X, Dong A, Bai B, Wang H (2017) Overexpression of TIMP3 protects against cardiac ischemia/reperfusion injury by inhibiting myocardial apoptosis through ROS/Mapks pathway. Cell Physiol Biochem 44(3):1011–1023. https://doi.org/10.1159/000485401

    Article  CAS  PubMed  Google Scholar 

  38. Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, Rokosh DG, Prough RA, Prabhu SD, Velayutham M, Zweier JL, Hoetker JD, Riggs DW, Srivastava S, Bolli R, Bhatnagar A (2015) Genetic deficiency of glutathione S-transferase P Increases myocardial sensitivity to ischemia-reperfusion injury. Circ Res 117(5):437–449. https://doi.org/10.1161/CIRCRESAHA.114.305518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng L, Jin Z, Zhao R, Ren K, Deng C, Yu S (2015) Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 8(7):10420–10428

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Ha T, Hu Y, Lu C, Liu L, Zhang X, Kao R, Kalbfleisch J, Williams D, Li C (2016) MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget 7(52):86926–86936. https://doi.org/10.18632/oncotarget.13494

    Article  PubMed  PubMed Central  Google Scholar 

  41. Deng C, Sun Z, Tong G, Yi W, Ma L, Zhao B, Cheng L, Zhang J, Cao F, Yi D (2013) alpha-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway. PLoS ONE 8(3):e58371. https://doi.org/10.1371/journal.pone.0058371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahfoudh-Boussaid A, Hadj Ayed Tka K, Zaouali MA, Rosello-Catafau J, Ben Abdennebi H (2014) Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion. Ren Fail 36(9):1436–1442. https://doi.org/10.3109/0886022X.2014.949765

    Article  CAS  PubMed  Google Scholar 

  43. Pan Q, Wang Y, Lan Q, Wu W, Li Z, Ma X, Yu L (2019) Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring microRNA-126. Stem Cells Int 2019:2831756. https://doi.org/10.1155/2019/2831756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Fellowship of China Postdoctoral Science Foundation (2020M681559); Key Project supported by Medical Science and Technology Development Foundation, Nanjing Department of Health (YKK20088); Key Project supported by Medical Science and Technology Development Foundation, Nanjing Department of Health (ZKX20026); the Clinical Trials from the Affiliated Drum Tower Hospital, Medical School of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

KSL is resposible for the study concepts, definition of intellectual content, literature research, clinical studies, experimental studies, data acquisition & analysis, manuscript preparation; PYZ is resposible for the definition of intellectual content, literature research, clinical studies, experimental studies, data acquisition & analysis, statistical analysis, manuscript preparation; SLL is resposible for the literature research, clinical studies, experimental studies, data analysis, statistical analysis; SYZ and DJW are the guarantor of integrity of the entire study, study design, manuscript editing & review. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shaoyi Zheng or Dongjin Wang.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest to disclose.

Ethical approval

The study got the approval of the Institutional Animal Care and Use Committee of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. All experiments were performed in line with the National Institutes of Health Guide to minimize the experimental pain in conscious animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zhou, P., Li, S. et al. MicroRNA-29b reduces myocardial ischemia–reperfusion injury in rats via down-regulating PTEN and activating the Akt/eNOS signaling pathway. J Thromb Thrombolysis 53, 123–135 (2022). https://doi.org/10.1007/s11239-021-02535-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02535-y

Keywords

Navigation