Skip to main content

Advertisement

Log in

Predicting mortality, thrombus recurrence and persistence in patients with post-acute myocardial infarction left ventricular thrombus

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Left ventricular thrombus (LVT) is a common complication of acute myocardial infarction and is associated with morbidity from embolic complications. Predicting which patients will develop death or persistent LVT despite anticoagulation may help clinicians identify high-risk patients. We developed a random forest (RF) model that predicts death or persistent LVT and evaluated its performance. This was a single-center retrospective cohort study in an academic tertiary center. We included 244 patients with LVT in our study. Patients who did not receive anticoagulation (n = 8) or had unknown (n = 31) outcomes were excluded. The primary outcome was a composite outcome of death, recurrent LVT and persistent LVT. We selected a total of 31 predictors collected at the point of LVT diagnosis based on clinical relevance. We compared conventional regularized logistic regression with the RF algorithm. There were 156 patients who had resolution of LVT and 88 patients who experienced the composite outcome. The RF model achieved better performance and had an AUROC of 0.700 (95% CI 0.553–0.863) on a validation dataset. The most important predictors for the composite outcome were receiving a revascularization procedure, lower visual ejection fraction (EF), higher creatinine, global wall motion abnormality, higher prothrombin time, higher body mass index, higher activated partial thromboplastin time, older age, lower lymphocyte count and higher neutrophil count. The RF model accurately identified patients with post-AMI LVT who developed the composite outcome. Further studies are needed to validate its use in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bulluck H, Chan MHH, Paradies V et al (2018) Incidence and predictors of left ventricular thrombus by cardiovascular magnetic resonance in acute ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: a meta-analysis. J Cardiovasc Magnet Reson 20(1):72. https://doi.org/10.1186/s12968-018-0494-3

    Article  Google Scholar 

  2. Delewi R, Zijlstra F, Piek JJ (2012) Left ventricular thrombus formation after acute myocardial infarction. Heart. 98(23):1743–1749. https://doi.org/10.1136/heartjnl-2012-301962

    Article  PubMed  Google Scholar 

  3. You J, Wang X, Wu J et al (2018) Predictors and prognosis of left ventricular thrombus in post-myocardial infarction patients with left ventricular dysfunction after percutaneous coronary intervention. J Thorac Dis 10(8):4912–4922. https://doi.org/10.21037/jtd.2018.07.69

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gianstefani S, Douiri A, Delithanasis I et al (2014) Incidence and predictors of early left ventricular thrombus after ST-elevation myocardial infarction in the contemporary era of primary percutaneous coronary intervention. Am J Cardiol 113(7):1111–1116. https://doi.org/10.1016/j.amjcard.2013.12.015

    Article  PubMed  Google Scholar 

  5. Maniwa N, Fujino M, Nakai M et al (2018) Anticoagulation combined with antiplatelet therapy in patients with left ventricular thrombus after first acute myocardial infarction. Eur Heart J 39(3):201–208. https://doi.org/10.1093/eurheartj/ehx551

    Article  CAS  PubMed  Google Scholar 

  6. Leow AS-T, Sia C-H, Tan BY-Q, Chan MY-Y, Loh JP-Y (2020) Characterisation of patients with acute myocardial infarction complicated by left ventricular thrombus. Eur J Intern Med. https://doi.org/10.1016/j.ejim.2020.01.003

    Article  PubMed  Google Scholar 

  7. Leow AS-T, Sia C-H, Tan BY-Q et al (2019) Characterisation of acute ischemic stroke in patients with left ventricular thrombi after myocardial infarction. J Thromb Thrombolysis 48(1):158–166. https://doi.org/10.1007/s11239-019-01829-6

    Article  PubMed  Google Scholar 

  8. Leow AS, Sia CH, Tan BY, Loh JP (2018) A meta-summary of case reports of non-vitamin K antagonist oral anticoagulant use in patients with left ventricular thrombus. J Thromb Thrombolysis 46(1):68–73. https://doi.org/10.1007/s11239-018-1656-8

    Article  CAS  PubMed  Google Scholar 

  9. McCarthy CP, Vaduganathan M, McCarthy KJ, Januzzi JL, Bhatt DL, McEvoy JW (2018) Left ventricular thrombus after acute myocardial infarction: screening, prevention, and treatment. JAMA Cardiol 3(7):642–649. https://doi.org/10.1001/jamacardio.2018.1086

    Article  PubMed  Google Scholar 

  10. Ibanez B, James S, Agewall S et al (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 39(2):119–177. https://doi.org/10.1093/eurheartj/ehx393

    Article  PubMed  Google Scholar 

  11. Nešković AN, Marinković J, Bojić M, Popović AD (1998) Predictors of left ventricular thrombus formation and disappearance after anterior wall myocardial infarction. Eur Heart J 19(6):908–916. https://doi.org/10.1053/euhj.1998.0871

    Article  PubMed  Google Scholar 

  12. Stratton JR, Nemanich JW, Johannessen KA, Resnick AD (1988) Fate of left ventricular thrombi in patients with remote myocardial infarction or idiopathic cardiomyopathy. Circulation 78(6):1388–1393. https://doi.org/10.1161/01.CIR.78.6.1388

    Article  CAS  PubMed  Google Scholar 

  13. Stratton JR, Lighty GW, Pearlman AS, Ritchie JL (1982) Detection of left ventricular thrombus by two-dimensional echocardiography: sensitivity, specificity, and causes of uncertainty. Circulation. 66(1):156–166. https://doi.org/10.1161/01.CIR.66.1.156

    Article  CAS  PubMed  Google Scholar 

  14. Haugland JM, Asinger RW, Mikell FL, Elsperger KJ, Hodges M (1981) Embolic potential of left ventricular thrombus (LVT) detected by two-dimensional echocardiography (2DE). Am J Cardiol 47:471. https://doi.org/10.1016/0002-9149(81)90959-0

    Article  Google Scholar 

  15. Galderisi M, Cosyns B, Edvardsen T et al (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 18(12):1301–1310. https://doi.org/10.1093/ehjci/jex244

    Article  PubMed  Google Scholar 

  16. Pollard TJ, Johnson AEW, Raffa JD, Mark RG (2018) tableone: An open source Python package for producing summary statistics for research papers. Jamia Open 1(1):26–31. https://doi.org/10.1093/jamiaopen/ooy012

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoerl AE, Kennard RW (2000) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1):80–86. https://doi.org/10.2307/1271436

    Article  Google Scholar 

  18. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Statist Soc Series B (Methodological). 58(1):267–288

    Article  Google Scholar 

  19. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Statist Soc Series Series B (Statistical Methodology) 67(2):301–320

    Article  Google Scholar 

  20. Breiman L (2001) Random forests. Machine Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  21. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI’95. Morgan Kaufmann Publishers Inc. 1137–1143

  22. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. Published online February 1, 2012.

  23. Lundberg SM, Lee S-I. (2017). A Unified Approach to Interpreting Model Predictions. In: Guyon I, Luxburg UV, Bengio S, et al. (Eds) Advances in Neural Information Processing Systems 30. Curran Associates, Inc. 4765-4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf. Accessed 29 March 2020.

  24. Macchia A, Levantesi G, Franzosi MG et al (2005) Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Failure 7(5):904–909. https://doi.org/10.1016/j.ejheart.2005.04.008

    Article  CAS  Google Scholar 

  25. Hobbs FDR, Roalfe AK, Davis RC, Davies MK, Hare R (2007) Prognosis of all-cause heart failure and borderline left ventricular systolic dysfunction: 5 year mortality follow-up of the Echocardiographic Heart of England Screening Study (ECHOES). Eur Heart J 28(9):1128–1134. https://doi.org/10.1093/eurheartj/ehm102

    Article  PubMed  Google Scholar 

  26. Bhakta D, Groh MR, Shen C, Pascuzzi RM, Groh WJ (2010) Increased mortality with left ventricular systolic dysfunction and heart failure in adults with myotonic dystrophy type 1. Am Heart J 160(6):1137-1141.e1. https://doi.org/10.1016/j.ahj.2010.07.032

    Article  PubMed  Google Scholar 

  27. O’Gara PT, Kushner FG, Ascheim DD et al (2013) 2013 ACCF/AHA Guideline for the management of ST-elevation myocardial infarction. Circulation. 127(4):e362–e425. https://doi.org/10.1161/CIR.0b013e3182742cf6

    Article  PubMed  Google Scholar 

  28. Amsterdam EA, Wenger NK, Brindis RG et al (2014) 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes. Circulation 130(25):e344–e426. https://doi.org/10.1161/CIR.0000000000000134

    Article  PubMed  Google Scholar 

  29. Wattanakit K, Cushman M (2009) Chronic kidney disease and venous thromboembolism: epidemiology and mechanisms. Curr. Opin. Pulm Med 15(5):408–412. https://doi.org/10.1097/MCP.0b013e32832ee371

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sia C-H, Leow AS-T, Tan BY-Q et al (2020) The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predict left ventricular thrombus resolution in acute myocardial infarction without percutaneous coronary intervention. Thrombosis Res 194:16–20. https://doi.org/10.1016/j.thromres.2020.06.003

    Article  CAS  Google Scholar 

  31. Bucholz EM, Rathore SS, Reid KJ et al (2012) Body mass index and mortality in acute myocardial infarction patients. Am J Med 125(8):796–803. https://doi.org/10.1016/j.amjmed.2012.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  32. Motwani M, Dey D, Berman DS et al (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 38(7):500–507. https://doi.org/10.1093/eurheartj/ehw188

    Article  PubMed  Google Scholar 

  33. Moghaddasi H, Nourian S (2016) Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comp Biol Med 73:47–55. https://doi.org/10.1016/j.compbiomed.2016.03.026

    Article  Google Scholar 

Download references

Funding

CHS was supported by the Singapore Population Health Improvement Centre (SPHERiC) Fellowship. This research is supported by the Singapore Ministry of Health’s National Medical Research Council under the Fellowship Programme by Singapore Population Health Improvement Centre (NMRC/CG/C026/2017_NUHS). CHS was also supported by the National University of Singapore Yong Loo Lin School of Medicine’s Junior Academic Faculty Scheme.

Author information

Authors and Affiliations

Authors

Contributions

WY and CHS conceived of the presented idea. WY developed the theory and performed the computations. TP provided technical assistance during the analysis. MC, JL, BT and LY supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Wesley Yeung.

Ethics declarations

Conflict of interest

We declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, W., Sia, CH., Pollard, T. et al. Predicting mortality, thrombus recurrence and persistence in patients with post-acute myocardial infarction left ventricular thrombus. J Thromb Thrombolysis 52, 654–661 (2021). https://doi.org/10.1007/s11239-020-02368-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02368-1

Keywords

Navigation