Skip to main content
Log in

Platelet reactivity in response to aspirin and ticagrelor in African-Americans and European-Americans

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Platelet gene polymorphisms are associated with variable on-treatment platelet reactivity and vary by race. Whether differences in platelet reactivity and aspirin or ticagrelor exist between African-American and European-Americans remains poorly understood. Biological samples from three prior prospective antiplatelet challenge studies at the Duke Clinical Research Unit were used to compare platelet reactivity between African-American and European-American subjects. Platelet reactivity at baseline, on-aspirin, on-ticagrelor, and the treatment effect of aspirin or ticagrelor were compared between groups using an adjusted mixed effects model. Compared with European-Americans (n = 282; 50% female; mean ± standard deviation age, 50 ± 16), African-Americans (n = 209; 67% female; age 48 ± 12) had lower baseline platelet reactivity with platelet function analyzer-100 (PFA-100) (p < 0.01) and with light transmission aggregometry (LTA) in response to arachidonic acid (AA), adenosine diphosphate (ADP), and epinephrine agonists (p < 0.05). African-Americans had lower platelet reactivity on aspirin in response to ADP, epinephrine, and collagen (p < 0.05) and on ticagrelor in response to AA, ADP, and collagen (p < 0.05). The treatment effect of aspirin was greater in European-Americans with an AA agonist (p = 0.002). Between-race differences with in vitro aspirin mirrored those seen in vivo. The treatment effect of ticagrelor was greater in European-Americans in response to ADP (p < 0.05) but with collagen, the treatment effect was greater for African-Americans (p < 0.05). Platelet reactivity was overall lower in African-Americans off-treatment, on aspirin, and on ticagrelor. European-Americans experienced greater platelet suppression on aspirin and on ticagrelor. The aspirin response difference in vivo and in vitro suggests a mechanism intrinsic to the platelet. Whether the absolute level of platelet reactivity or the degree of platelet suppression after treatment is more important for clinical outcomes is uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AUC:

Area under the curve

AU*min:

Percent aggregation units per minute

ADP:

Adenosine diphosphate

CAD:

Coronary artery disease

COL:

Collagen

COX-1:

Cyclooxygenase-1

DM:

Diabetes mellitus

EPI:

Epinephrine

HTPR:

High on-treatment platelet reactivity

LTA:

Light transmission aggregometry

LTPR:

Low on-treatment platelet reactivity

PFA:

Platelet function analyzer

PLATO:

Platelet Inhibition and Patient Outcomes trial

PRP:

Platelet rich plasma

vWF:

Von Willebrand factor

References

  1. Patrono C, Morais J, Baigent C et al (2017) Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. J Am Coll Cardiol 70(14):1760–1776

    Article  PubMed  Google Scholar 

  2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1988) Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2(8607):349–360

    Google Scholar 

  3. Antithrombotic TC (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324(7329):71–86

    Article  Google Scholar 

  4. Stone GW, Witzenbichler B, Weisz G et al (2013) Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet 382(9892):614–623

    Article  PubMed  Google Scholar 

  5. Gum PA, Kottke-Marchant K, Welsh PA, White J, Topol EJ (2003) A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J Am Coll Cardiol 41(6):961–965

    Article  CAS  PubMed  Google Scholar 

  6. Wenaweser P, Dorffler-Melly J, Imboden K et al (2005) Stent thrombosis is associated with an impaired response to antiplatelet therapy. J Am Coll Cardiol 45(11):1748–1752

    Article  PubMed  Google Scholar 

  7. Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Huisman MV (2007) Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Arch Intern Med 167(15):1593–1599

    Article  PubMed  Google Scholar 

  8. Cuisset T, Cayla G, Frere C et al (2009) Predictive value of post-treatment platelet reactivity for occurrence of post-discharge bleeding after non-ST elevation acute coronary syndrome Shifting from antiplatelet resistance to bleeding risk assessment? EuroIntervention 5(3):325–329

    Article  PubMed  Google Scholar 

  9. Tantry US, Bonello L, Aradi D et al (2013) Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol 62(24):2261–2273

    Article  CAS  PubMed  Google Scholar 

  10. Aradi D, Kirtane A, Bonello L et al (2015) Bleeding and stent thrombosis on P2Y12-inhibitors: collaborative analysis on the role of platelet reactivity for risk stratification after percutaneous coronary intervention. Eur Heart J 36(27):1762–1771

    Article  CAS  PubMed  Google Scholar 

  11. Faraday N, Yanek LR, Mathias R et al (2007) Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation 115(19):2490–2496

    Article  CAS  PubMed  Google Scholar 

  12. Frelinger AL 3rd, Furman MI, Linden MD et al (2006) Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation 113(25):2888–2896

    Article  CAS  PubMed  Google Scholar 

  13. Verdoia M, Sartori C, Pergolini P et al (2016) Prevalence and predictors of high-on treatment platelet reactivity with ticagrelor in ACS patients undergoing stent implantation. Vasc Pharmacol 77:48–53

    Article  CAS  Google Scholar 

  14. Siller-Matula JM, Akca B, Neunteufl T et al (2016) Inter-patient variability of platelet reactivity in patients treated with prasugrel and ticagrelor. Platelets 27(4):373–377

    Article  CAS  PubMed  Google Scholar 

  15. Yee DL, Sun CW, Bergeron AL, Dong JF, Bray PF (2005) Aggregometry detects platelet hyperreactivity in healthy individuals. Blood 106(8):2723–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaxiola B, Friedl W, Propping P (1984) Epinephrine-induced platelet aggregation. A twin study. Clin Genet 26(6):543–548

    Article  CAS  PubMed  Google Scholar 

  17. O’Donnell CJ, Larson MG, Feng D et al (2001) Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation 103(25):3051–3056

    Article  CAS  PubMed  Google Scholar 

  18. Bray PF, Mathias RA, Faraday N et al (2007) Heritability of platelet function in families with premature coronary artery disease. J Thromb Haemost 5(8):1617–1623

    Article  CAS  PubMed  Google Scholar 

  19. Edelstein LC, Simon LM, Montoya RT et al (2013) Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 19(12):1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim HO, Jin Y, Kickler TS, Blakemore K, Kwon OH, Bray PF (1995) Gene frequencies of the five major human platelet antigens in African-American, white, and Korean populations. Transfusion 35(10):863–867

    Article  CAS  PubMed  Google Scholar 

  21. Ramsey G, Salamon DJ (1986) Frequency of PLA1 in blacks. Transfusion 26(6):531–532

    Article  CAS  PubMed  Google Scholar 

  22. Ulrich CM, Carlson CS, Sibert J et al (2005) Thromboxane synthase (TBXAS1) polymorphisms in African-American and Caucasian populations: evidence for selective pressure. Hum Mutat 26(4):394–395

    Article  PubMed  Google Scholar 

  23. Weng Z, Li X, Li Y, Lin J, Peng F, Niu W (2013) The association of four common polymorphisms from four candidate genes (COX-1, COX-2, ITGA2B, ITGA2) with aspirin insensitivity: a meta-analysis. PLoS ONE 8(11):e78093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wallentin L, Becker RC, Budaj A et al (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11):1045–1057

    Article  CAS  PubMed  Google Scholar 

  25. Alexopoulos D, Xanthopoulou I, Gkizas V et al (2012) Randomized assessment of ticagrelor versus prasugrel antiplatelet effects in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 5(6):797–804

    Article  CAS  PubMed  Google Scholar 

  26. Parodi G, Valenti R, Bellandi B et al (2013) Comparison of prasugrel and ticagrelor loading doses in ST-segment elevation myocardial infarction patients: RAPID (Rapid Activity of Platelet Inhibitor Drugs) primary PCI study. J Am Coll Cardiol 61(15):1601–1606

    Article  CAS  PubMed  Google Scholar 

  27. Ibrahim K, Christoph M, Schmeinck S et al (2014) High rates of prasugrel and ticagrelor non-responder in patients treated with therapeutic hypothermia after cardiac arrest. Resuscitation 85(5):649–656

    Article  CAS  PubMed  Google Scholar 

  28. Vang JJ, Nilsson L, Berntsson P et al (2009) Ticagrelor binds to human P2Y(12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost 7(9):1556–1565

    Article  CAS  Google Scholar 

  29. Wadowski PP, Eichelberger B, Kopp CW et al (2017) Disaggregation following agonist-induced platelet activation in patients on dual antiplatelet therapy. J Cardiovasc Transl Res 10(4):359–367

    Article  PubMed  PubMed Central  Google Scholar 

  30. Elwood PC, Cochrane AL, Burr ML et al (1974) A randomized controlled trial of acetyl salicylic acid in the secondary prevention of mortality from myocardial infarction. Br Med J 1(5905):436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. The RISC Group (1990) Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. Lancet 336(8719):827–830

    Article  Google Scholar 

  32. Ford ES (2013) Trends in predicted 10-year risk of coronary heart disease and cardiovascular disease among U.S. adults from 1999 to 2010. J Am Coll Cardiol 61(22):2249–2252

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131(4):e29-322

    PubMed  Google Scholar 

  34. Albright KC, Huang L, Blackburn J et al (2018) Racial differences in recurrent ischemic stroke risk and recurrent stroke case fatality. Neurology 91(19):e1741–e1750

    Article  PubMed  PubMed Central  Google Scholar 

  35. Voora D, Ortel TL, Lucas JE et al (2012) Time-dependent changes in non-COX-1-dependent platelet function with daily aspirin therapy. J Thromb Thrombolysis 33(3):246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ortel TL, James AH, Thames EH et al (2000) Assessment of primary hemostasis by PFA-100 analysis in a tertiary care center. Thromb Haemost 84(1):93–97

    CAS  PubMed  Google Scholar 

  37. Valenti R, Cantini G, Marcucci R et al (2015) Prognostic impact of high residual platelet reactivity after chronic total occlusion percutaneous coronary intervention in patients with diabetes mellitus. Int J Cardiol 201:561–567

    Article  PubMed  Google Scholar 

  38. Meade TW, Vickers MV, Thompson SG, Stirling Y, Haines AP, Miller GJ (1985) Epidemiological characteristics of platelet aggregability. Br Med J (Clin Res Ed) 290(6466):428–432

    Article  CAS  Google Scholar 

  39. Trip MD, Cats VM, van Capelle FJ, Vreeken J (1990) Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 322(22):1549–1554

    Article  CAS  PubMed  Google Scholar 

  40. Thaulow E, Erikssen J, Sandvik L, Stormorken H, Cohn PF (1991) Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 84(2):613–617

    Article  CAS  PubMed  Google Scholar 

  41. Terres W, Lund GK, Hubner A, Ehlert A, Reuter H, Hamm CW (1995) Endogenous tissue plasminogen activator and platelet reactivity as risk factors for reocclusion after recanalization of chronic total coronary occlusions. Am Heart J 130(4):711–716

    Article  CAS  PubMed  Google Scholar 

  42. Elwood PC, Renaud S, Beswick AD, O’Brien JR, Sweetnam PM (1998) Platelet aggregation and incident ischaemic heart disease in the Caerphilly cohort. Heart 80(6):578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meade TW, Cooper JA, Miller GJ (1997) Platelet counts and aggregation measures in the incidence of ischaemic heart disease (IHD). Thromb Haemost 78(2):926–929

    Article  CAS  PubMed  Google Scholar 

  44. Gaglia MA Jr, Lipinski MJ, Lhermusier T et al (2017) Comparison of platelet reactivity in black versus white patients with acute coronary syndromes after treatment with ticagrelor. Am J Cardiol 119(8):1135–1140

    Article  CAS  PubMed  Google Scholar 

  45. Husted S, van Giezen JJ (2009) Ticagrelor: the first reversibly binding oral P2Y1P2Y12 receptor antagonist. Cardiovasc Ther 27(4):259–274

    Article  CAS  PubMed  Google Scholar 

  46. Zhao P, Metcalf M, Bunnett NW (2014) Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 5:67

    Article  Google Scholar 

  47. Tourdot BE, Conaway S, Niisuke K, Edelstein LC, Bray PF, Holinstat M (2014) Mechanism of race-dependent platelet activation through the protease-activated receptor-4 and Gq signaling axis. Arterioscler Thromb Vasc Biol 34(12):2644–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas KL, Honeycutt E, Shaw LK, Peterson ED (2010) Racial differences in long-term survival among patients with coronary artery disease. Am Heart J 160(4):744–751

    Article  PubMed  Google Scholar 

  49. Fernandez-Jimenez R, Wang TJ, Fuster V, Blot WJ (2019) Low-dose aspirin for primary prevention of cardiovascular disease: use patterns and impact across race and ethnicity in the southern community cohort study. J Am Heart Assoc 8(24):e013404

    Article  PubMed  PubMed Central  Google Scholar 

  50. Collins SD, Torguson R, Gaglia MA Jr et al (2010) Does black ethnicity influence the development of stent thrombosis in the drug-eluting stent era? Circulation 122(11):1085–1090

    Article  PubMed  Google Scholar 

  51. Urban P, Mehran R, Colleran R et al (2019) Defining high bleeding risk in patients undergoing percutaneous coronary intervention. Circulation 140(3):240–261

    Article  PubMed  PubMed Central  Google Scholar 

  52. Casto AM, Feldman MW (2011) Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet 7(1):e1001266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tourdot BE, Stoveken H, Trumbo D et al (2018) Genetic variant in human PAR (protease-activated receptor) 4 enhances thrombus formation resulting in resistance to antiplatelet therapeutics. Arterioscler Thromb Vasc Biol 38(7):1632–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Edelstein LC, Simon LM, Lindsay CR et al (2014) Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood 124(23):3450–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Faraday N, Yanek LR, Yang XP et al (2011) Identification of a specific intronic PEAR1 gene variant associated with greater platelet aggregability and protein expression. Blood 118(12):3367–3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qayyum R, Becker LC, Becker DM et al (2015) Genome-wide association study of platelet aggregation in African-Americans. BMC Genet 16:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kambayashi J, Shinoki N, Nakamura T et al (1996) Prevalence of impaired responsiveness to epinephrine in platelets among Japanese. Thromb Res 81(1):85–90

    Article  CAS  PubMed  Google Scholar 

  58. Siffert W, Forster P, Jockel KH et al (1999) Worldwide ethnic distribution of the G protein beta3 subunit 825T allele and its association with obesity in European-American, Chinese, and Black African individuals. J Am Soc Nephrol 10(9):1921–1930

    CAS  PubMed  Google Scholar 

  59. Dusse F, Frey UH, Bilalic A et al (2012) The GNB3 C825T polymorphism influences platelet aggregation in human whole blood. Pharmacogenet Genom 22(1):43–49

    Article  CAS  Google Scholar 

  60. Yee DL, Bergeron AL, Sun CW, Dong JF, Bray PF (2006) Platelet hyperreactivity generalizes to multiple forms of stimulation. J Thromb Haemost 4(9):2043–2050

    Article  CAS  PubMed  Google Scholar 

  61. Naber C, Hermann BL, Vietzke D et al (2000) Enhanced epinephrine-induced platelet aggregation in individuals carrying the G protein beta3 subunit 825T allele. FEBS Lett 484(3):199–201

    Article  CAS  PubMed  Google Scholar 

  62. Strisciuglio T, Franco D, Di Gioia G et al (2018) Impact of genetic polymorphisms on platelet function and response to anti platelet drugs. Cardiovasc Diagn Ther 8(5):610–620

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morange PE, Simon C, Alessi MC et al (2004) Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation 109(11):1343–1348

    Article  CAS  PubMed  Google Scholar 

  64. Conlan MG, Folsom AR, Finch A et al (1993) Associations of factor VIII and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study. Thromb Haemost 70(3):380–385

    Article  CAS  PubMed  Google Scholar 

  65. Folsom AR, Aleksic N, Sanhueza A, Boerwinkle E (2009) Risk factor correlates of platelet and leukocyte markers assessed by flow cytometry in a population-based sample. Atherosclerosis 205(1):272–278

    Article  CAS  PubMed  Google Scholar 

  66. Lev EI, Bliden KP, Jeong YH et al (2014) Influence of race and sex on thrombogenicity in a large cohort of coronary artery disease patients. J Am Heart Assoc 3(5):e001167

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wilson JF, Weale ME, Smith AC et al (2001) Population genetic structure of variable drug response. Nat Genet 29(3):265–269

    Article  CAS  PubMed  Google Scholar 

  68. Rosenberg NA, Pritchard JK, Weber JL et al (2002) Genetic structure of human populations. Science 298(5602):2381–2385

    Article  CAS  PubMed  Google Scholar 

  69. Tang H, Quertermous T, Rodriguez B et al (2005) Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76(2):268–275

    Article  CAS  PubMed  Google Scholar 

  70. Carson P, Ziesche S, Johnson G, Cohn JN (1999) Racial differences in response to therapy for heart failure: analysis of the vasodilator-heart failure trials. Vasodilator-Heart Failure Trial Study Group. J Card Fail 5(3):178–187

    Article  CAS  PubMed  Google Scholar 

  71. Jamerson K, DeQuattro V (1996) The impact of ethnicity on response to antihypertensive therapy. Am J Med 101(3A):22S-32S

    Article  CAS  PubMed  Google Scholar 

  72. Ramamoorthy A, Pacanowski MA, Bull J, Zhang L (2015) Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin Pharmacol Ther 97(3):263–273

    Article  CAS  PubMed  Google Scholar 

  73. Teng R, Butler K (2014) Pharmacokinetics, pharmacodynamics, and tolerability of single and multiple doses of ticagrelor in Japanese and European-American volunteers. Int J Clin Pharmacol Ther 52(6):478–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No other persons besides the authors have made substantial contributions to this manuscript.

Funding

This research was supported by the National Institutes of Health R01HL118049 and National Center for Research Resources, a component of the NIH 5UL1RR024128 Grant (Dr. Voora); the National Institutes of General Medical Sciences 5RC1GM091083 Grant (Dr. Ginsburg); the Centers for Disease Control and Prevention Grant 5U01DD000014 (Dr. Ortel), and the 2012/0003R Grant from Duke-National University Singapore (Dr. Ru San)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Voora.

Ethics declarations

Disclosures

The authors have no relevant disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 7708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infeld, M., Friede, K.A., San, T.R. et al. Platelet reactivity in response to aspirin and ticagrelor in African-Americans and European-Americans. J Thromb Thrombolysis 51, 249–259 (2021). https://doi.org/10.1007/s11239-020-02327-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02327-w

Keywords

Navigation