Skip to main content
Log in

A 1-year drug utilization evaluation of protamine in hospitalized patients to identify possible future roles of heparin and low molecular weight heparin reversal agents

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Despite widespread use of unfractionated heparin (UFH) and low molecular weight heparin (LMWH), protamine sulfate remains the only reversal agent for UFH that is approved by the Food and Drug Administration within the US. Availability of new reversal agents for approved anticoagulants and those in development may improve patient safety and care. Delparantag (PMX-60056) is a novel small molecule that shows ability to neutralize the anticoagulation effects of UFH and LMWH in animals and humans. This study examined the 1-year utilization of protamine within an acute care hospital in order to determine the need for a novel reversing agent like delparantag. All patients having documented protamine administration within a 1-year period were included. Pharmacy automated dispensing machines and computerized medication management systems were queried for all doses of protamine withdrawn, billed for, or dispensed. Scanned medical records were reviewed and protamine and anticoagulant information was abstracted. Primary procedural group categorizations for protamine patients were coronary artery bypass graft, cardiac valve surgeries, abdominal aortic aneurysm and other open abdominal surgeries, fistula placement, non-cardiac vascular, cardiac catheter and electrophysiology lab, and “other.” Average doses of protamine administered were 439, 423, 126, 26, 46, 36, and 35 mg in these groups, respectively. Four major bleeds and one serious adverse event occurred over the year period. Protamine is used in a wide array of procedures. Evaluating protamine’s current use may be beneficial in identifying roles for future UFH and LMWH reversal agent use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garcia DA, Baglin TP, Weitz JI, Samama MM (2012) Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl):e24S–e43S

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Weitz JI, Eikelboom JW, Samama MM (2012) New antithrombotic drugs: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl):e120S–e151S

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Douketis JD, Spyropoulos AC, Spencer FA et al (2012) Perioperative management of antithrombotic therapy. Chest 141(2 Suppl):e326S–e350S

    PubMed Central  PubMed  CAS  Google Scholar 

  4. http://www.drugs.com/mmx/protamine-sulfate.html. Accessed 20 Mar 2011. Protamine package insert

  5. Hirsh J, Bauer KA, Donati MB, Gould M, Samama MM, Weitz JI (2008) Parenteral anticoagulants. Chest 133(6 Suppl):141S–159S

    Article  PubMed  CAS  Google Scholar 

  6. Schulman S, Angeras U, Bergqvist D, Eriksson B, Lassen MR, Fisher W (2010) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in surgical patients. J Thromb Haemost 8(1):202–204

    Article  PubMed  CAS  Google Scholar 

  7. Schulman S, Kearon C (2005) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 3(4):692–694

    Article  PubMed  CAS  Google Scholar 

  8. Bjornaas MA, Jacobsen EM, Jacobsen D (2010) Nonfatal self-poisoning with LMW heparin and the use of antidote. Thromb Res 126(5):e403–e405

    Article  PubMed  CAS  Google Scholar 

  9. Chawla LS, Moore G, Seneff MG (2004) Incomplete reversal of enoxaparin toxicity by protamine: implications of renal insufficiency, obesity, and low molecular weight heparin sulfate content. Obes Surg 14(5):695–698

    Article  PubMed  Google Scholar 

  10. Farooq V, Hegarty J, Chandrasekar T et al (2004) Serious adverse incidents with the usage of low molecular weight heparins in patients with chronic kidney disease. Am J Kidney Dis 43(3):531–537

    Article  PubMed  Google Scholar 

  11. Makris M, Hough RE, Kitchen S (2000) Poor reversal of low molecular weight heparin by protamine. Br J Haematol 108(4):884–885

    Article  PubMed  CAS  Google Scholar 

  12. http://clinicaltrials.gov/ct2/show/NCT00715455?term=regado&rank=2. Accessed 4 April 2011

  13. Shenoy S, Harris RB, Sobel M (1999) Development of heparin antagonists with focused biological activity. Curr Pharm Des 5(12):965–986

    PubMed  CAS  Google Scholar 

  14. Chan S, Kong M, Minning DM, Hedner U, Marder VJ (2003) Assessment of recombinant factor VIIa as an antidote for bleeding induced in the rabbit by low molecular weight heparin. J Thromb Haemost 1(4):760–765

    Article  PubMed  CAS  Google Scholar 

  15. Mecca T, Consoli GM, Geraci C, La Spina R, Cunsolo F (2006) Polycationic calix[8]arenes able to recognize and neutralize heparin. Org Biomol Chem 4(20):3763–3768

    Article  PubMed  CAS  Google Scholar 

  16. Cushing DJ, Cooper WD, Cohen ML, McVoy JR, Sobel M, Harris RB (2010) Reversal of heparin-induced increases in aPTT in the rat by PM102, a novel heparin antagonist. Eur J Pharmacol 635(1–3):165–170

    Article  PubMed  CAS  Google Scholar 

  17. Gale AJ, Elias DJ, Averell PM et al (2011) Engineered virus-like nanoparticles reverse heparin anticoagulation more consistently than protamine in plasma from heparin-treated patients. Thromb Res 128(4):e9–e13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Andrade SA, Carrijo-Carvalho LC, Peceguini LA et al (2012) Reversal of the anticoagulant and anti-hemostatic effect of low molecular weight heparin by direct prothrombin activation. Braz J Med Biol Res 45(10):929–934

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Condac E, Strachan H, Gutierrez-Sanchez G et al (2012) The C-terminal fragment of axon guidance molecule Slit3 binds heparin and neutralizes heparin’s anticoagulant activity. Glycobiology 22(9):1183–1192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Bianchini EP, Fazavana J, Picard V, Borgel D (2011) Development of a recombinant antithrombin variant as a potent antidote to fondaparinux and other heparin derivatives. Blood 117(6):2054–2060

    Article  PubMed  CAS  Google Scholar 

  21. Zhou X, Li L, Linhardt RJ, Liu J (2013) Neutralizing the anticoagulant activity of ultra-low molecular weight heparins using N-acetylglucosamine 6-sulfatase. FEBS J. doi:10.1111/febs.12169

    Google Scholar 

  22. http://www.portola.com/PRT4445-Fxa-Inhibitor-Antidote. Accessed 4 Mar 2013

  23. Cohen MG, Purdy DA, Rossi JS et al (2010) First clinical application of an actively reversible direct factor IXa inhibitor as an anticoagulation strategy in patients undergoing percutaneous coronary intervention. Circulation 122(6):614–622

    Article  PubMed  CAS  Google Scholar 

  24. http://clinicaltrials.gov/ct2/show/results/NCT00715455?term=reversal+and+heparin&rank=1 Reg1 system. Accessed 5 Feb 2013

  25. Povsic TJ, Cohen MG, Mehran R, et al. (2011) A randomized, partially blinded, multicenter, active-controlled, dose-ranging study assessing the safety, efficacy, and pharmacodynamics of the REG1 anticoagulation system in patients with acute coronary syndromes: design and rationale of the RADAR Phase IIb trial. Am Heart J. 161(2):261–268 2011 e261–262

    Google Scholar 

  26. Povsic TJ, Vavalle JP, Aberle LH, et al.(2012) A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur Heart J. Aug 2 2012

  27. Povsic TJ, Wargin WA, Alexander JH et al (2011) Pegnivacogin results in near complete FIX inhibition in acute coronary syndrome patients. Eur Heart J 32(19):2412–2419

    Article  PubMed  CAS  Google Scholar 

  28. McAllister, R. E. (2010) Heparin-Antagonist PMX-60056 Rapidly and Completely Reverses Heparin Anticoagulation in Man. American Heart Association

  29. McAllister RE (2010) Reversal of heparin by novel synthetic antagonist PMX-60056 exhibits a linear dose-response relationship. Poster Presentation, American Society of Hematology annual meeting and exposition

    Google Scholar 

  30. McAllister, R. E. Heparin-Antagonist PMX-60056(2010) Rapidly Reverses Anti-Xa and aPTT Effects of Tinzaparin in Man. Poster Presentation at American Heart Association

  31. Kuziej J, Litinas E, Hoppensteadt DA et al (2010) In vivo neutralization of unfractionated heparin and low-molecular-weight heparin by a novel salicylamide derivative. Clin Appl Thromb Hemost 16(4):377–386

    Article  PubMed  CAS  Google Scholar 

  32. Warkentin TE, Greinacher A, Koster A, Lincoff AM (2008) Treatment and prevention of heparin-induced thrombocytopenia. Chest 133(6 Suppl):340S–380S

    Article  PubMed  CAS  Google Scholar 

  33. Baroletti S, Piovella C, Fanikos J, Labreche M, Lin J, Goldhaber SZ (2008) Heparin-induced thrombocytopenia (HIT). Thromb Haemost 100(6):1130–1135

    PubMed  CAS  Google Scholar 

  34. Creekmore FM, Oderda GM, Pendleton RC, Brixner DI (2006) Incidence and economic implications of heparin-induced thrombocytopenia in medical patients receiving prophylaxis for venous thromboembolism. Pharmacotheraphy 26(10):1438–1445

    Article  Google Scholar 

  35. American Heart Association.(2006) Heart disease and stroke statistics update. Dallas: American Heart Association

  36. Leon MB, Smith CR, Mack M et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607

    Article  PubMed  CAS  Google Scholar 

  37. Anderson FA Jr, Zayaruzny M, Heit JA, Fidan D, Cohen AT (2007) Estimated annual numbers of US acute-care hospital patients at risk for venous thromboembolism. Am J Hematol 82(9):777–782

    Article  PubMed  Google Scholar 

  38. Mahan CE, Borrego ME, Woersching AL et al (2012) Venous thromboembolism: annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack rates. Thromb Haemost 108(2):291–302

    Article  PubMed  CAS  Google Scholar 

  39. Hirsh J, Hoak J (1996) Management of deep vein thrombosis and pulmonary embolism. a statement for healthcare professionals. Council on Thrombosis (in consultation with the Council on Cardiovascular Radiology), American Heart Association. Circulation 93(12):2212–2245

    Article  PubMed  CAS  Google Scholar 

  40. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ (2008) Antithrombotic therapy for venous thromboembolic disease. Chest 133(6 Suppl):454S–545S

    Article  PubMed  CAS  Google Scholar 

  41. Spyropoulos AC, Hurley JS, Ciesla GN, de Lissovoy G (2002) Management of acute proximal deep vein thrombosis. Chest 122(1):108–114

    Article  PubMed  Google Scholar 

  42. Mahan CE, Spyropoulos AC (2011) Perioperative antithrombotic management and anticoagulant bridging. Can J Gen Intern Med 6(1 Suppl):13–21

    Google Scholar 

  43. Go AS, Hylek EM, Phillips KA et al (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention. JAMA 285(18):2370–2375

    Article  PubMed  CAS  Google Scholar 

  44. Douketis JD, Berger PB, Dunn AS et al (2008) The perioperative management of antithrombotic therapy. Chest 133(6 Suppl):299S–339S

    Article  PubMed  CAS  Google Scholar 

  45. Weitz JI, Hirsh J, Samama MM (2008) New antithrombotic drugs. Chest 133(6 Suppl):234S–256S

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Mahan would like to acknowledge Dr. Eric McAllister, Dr. Bozena Korczak, and PolyMedix Pharmaceuticals for initiating the study concept and for editorial support of the manuscript. In addition, Dr. Mahan would like to thank Bridget Knowlton, CPHT, and Dr. Madina Nourestani, PharmD for their help in data abstraction.

Disclosure

Dr. Mahan was a paid consultant for Polymedix Inc. as it relates to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Mahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahan, C.E. A 1-year drug utilization evaluation of protamine in hospitalized patients to identify possible future roles of heparin and low molecular weight heparin reversal agents. J Thromb Thrombolysis 37, 271–278 (2014). https://doi.org/10.1007/s11239-013-0927-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-0927-7

Keywords

Navigation