Skip to main content

Advertisement

Log in

Markers of platelet apoptosis: methodology and applications

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Apoptosis, or programmed cell death, is a physiological mechanism that serves for controlled deletion of damaged cells. While long attributed exclusively to nucleated cells, over recent years it has been recognized that apoptosis also occurs in anucleate platelets. We describe here experiences of determining markers of apoptosis in human platelets treated in vitro with pro-apoptotic chemical and physical stimuli. These include depolarization of mitochondrial inner membrane, cytochrome c release, expression of pro-apoptotic and anti-apoptotic proteins of Bcl-2 family, activation of apoptosis executioner caspase-3, exposure of phosphatidylserine, platelet shrinkage, fragmentation to microparticles, blebbing and filopod extrusion on the platelet surface. These assays serve to characterize platelet apoptosis in different cellular compartments (mitochondria, cytosol and plasma membrane) and at the whole-cell level. Methods commonly employed in studies of platelet apoptosis markers include flow cytometry, Western blot analysis and electron microscopy. An integrated methodological approach, based on determination of different platelet apoptosis markers, represents a useful tool for examining platelet apoptosis in various physiological and pathological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7(11):1759–1766

    Article  PubMed  CAS  Google Scholar 

  2. Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Article  PubMed  CAS  Google Scholar 

  3. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  PubMed  CAS  Google Scholar 

  4. Green DR, Kroemer G (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 115(10):2610–2617

    Article  PubMed  CAS  Google Scholar 

  5. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267(5203):1445–1449

    Article  PubMed  CAS  Google Scholar 

  6. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  PubMed  CAS  Google Scholar 

  7. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  PubMed  CAS  Google Scholar 

  8. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  PubMed  CAS  Google Scholar 

  9. Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21(6):871–877

    Article  PubMed  CAS  Google Scholar 

  10. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(8):2207–2216

    PubMed  CAS  Google Scholar 

  11. Martin SJ, Finucane DM, Amarante-Mendes GP, O’Brien GA, Green DR (1996) Phosphatidylserine externalization during CD95-induced apoptosis of cells cytoplasts requires ICE/CED-3 protease activity. J Biol Chem 271(46):28753–28756

    Article  PubMed  CAS  Google Scholar 

  12. Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A, Kroemer G (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157(2):512–521

    PubMed  CAS  Google Scholar 

  13. Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13(8):1899–1910

    PubMed  CAS  Google Scholar 

  14. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 127(1):15–20

    Article  PubMed  CAS  Google Scholar 

  15. Vanags DM, Orrenius S, Aguilar-Santelises M (1997) Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis. Br J Haematol 99(4):824–831

    Article  PubMed  CAS  Google Scholar 

  16. Shcherbina A, Remold-O’Donnell E (1999) Role of caspase in a subset of human platelet activation responses. Blood 93(12):4222–4231

    PubMed  CAS  Google Scholar 

  17. Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR (1999) Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94(5):1683–1692

    PubMed  CAS  Google Scholar 

  18. Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ (2000) The mechanism of apoptosis in human platelets during storage. Transfusion 40(11):1320–1329

    Article  PubMed  CAS  Google Scholar 

  19. Leytin V, Freedman J (2003) Platelet apoptosis in stored platelet concentrates and other models. Transfus Apher Sci 28(3):285–295

    Article  PubMed  Google Scholar 

  20. Leytin V, Allen DJ, Mykhaylov S, Mis L, Lyubimov EV, Garvey B, Freedman J (2004) Pathologic high shear stress induces apoptosis events in human platelets. Biochem Biophys Res Commun 320(2):303–310

    Article  PubMed  CAS  Google Scholar 

  21. Leytin V, Allen DJ, Mykhaylov S, Lyubimov E, Freedman J (2006) Thrombin-triggered platelet apoptosis. J Thromb Haemost 4(12):2656–2663

    Article  PubMed  CAS  Google Scholar 

  22. Leytin V, Allen DJ, Lyubimov E, Freedman J (2007) Higher thrombin concentrations are required to induce platelet apoptosis than to induce platelet activation. Br J Haematol 136(5):762–764

    Article  PubMed  CAS  Google Scholar 

  23. Leytin V, Allen DJ, Mutlu A, Mykhaylov S, Lyubimov E, Freedman J (2008) Platelet activation and apoptosis are different phenomena: evidence from the sequential dynamics and the magnitude of responses during platelet storage. Br J Haematol 142(3):494–497

    Article  PubMed  Google Scholar 

  24. Leytin VL, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J (2009) Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Lab Invest 89(4):374–384

    Article  PubMed  CAS  Google Scholar 

  25. Leytin V, Mykhaylov S, Starkey AF, Allen DJ, Lau H, Ni H, Semple JW, Lazarus AH, Freedman J (2006) Intravenous immunoglobulin inhibits anti-GPIIb-induced platelet apoptosis in a murine model of ITP. Br J Haematol 133(1):78–82

    PubMed  CAS  Google Scholar 

  26. Leytin V, Allen DJ, Mutlu A, Mykhaylov S, Lyubimov E, Freedman J (2009) Stored platelet concentrates produced by the platelet-rich plasma method are more resistant to apoptosis but more sensitive to activation than are platelets prepared by the buffy-coat and apheresis methods. Transfusion 49(7):1493–1494

    Article  PubMed  Google Scholar 

  27. Leytin V, Mutlu A, Mykhaylov S, Allen DJ, Gyulkhandanyan AV, Freedman J (2009) The GPIIbIIIa antagonist drugs eptifibatide and tirofiban do not induce activation of apoptosis executioner caspase-3 in resting human platelets but inhibit caspase-3 activation in platelets stimulated with thrombin or calcium ionophore A23187. Haematologica 94(12):1783–1784

    Article  PubMed  CAS  Google Scholar 

  28. Leytin V (2012) Apoptosis in the anucleate platelet. Blood Rev 26(2):51–63

    Google Scholar 

  29. Brown SB, Clarke MC, Magowan L, Sanderson H, Savill J (2000) Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspase-independent cell clearance program. J Biol Chem 275(8):5987–5996

    Article  PubMed  CAS  Google Scholar 

  30. Bertino AM, Qi XQ, Li J, Xia Y, Kuter DJ (2003) Apoptotic markers are increased in platelets stored at 37 degrees C. Transfusion 43(7):857–866

    Article  PubMed  CAS  Google Scholar 

  31. Plenchette S, Moutet M, Benguella M, N’Gondara JP, Guigner F, Coffe C, Corcos L, Bettaieb A, Solary E (2001) Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion. Leukemia 15(10):1572–1581

    Article  PubMed  CAS  Google Scholar 

  32. Perrotta PL, Perrotta CL, Snyder EL (2003) Apoptotic activity in stored human platelets. Transfusion 43(4):526–535

    Article  PubMed  CAS  Google Scholar 

  33. Pereira J, Soto M, Palomo I, Ocqueteau M, Coetzee LM, Astudillo S, Aranda E, Mezzano D (2002) Platelet aging in vivo is associated with activation of apoptotic pathways: studies in a model of suppressed thrombopoiesis in dogs. Thromb Haemost 87(5):905–909

    PubMed  CAS  Google Scholar 

  34. Piguet PF, Vesin C (2002) Modulation of platelet caspases and life-span by anti-platelet antibodies in mice. Eur J Haematol 68(5):253–261

    Article  PubMed  CAS  Google Scholar 

  35. Lopez JJ, Salido GM, Gomez-Arteta E, Rosado JA, Pariente JA (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5(6):1283–1291

    Article  PubMed  CAS  Google Scholar 

  36. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DC, Kile BT (2007) Programmed anuclear cell death delimits platelet life span. Cell 128(6):1173–1186

    Article  PubMed  CAS  Google Scholar 

  37. Rand ML, Wang H, Bang KW, Poon KS, Packham MA, Freedman J (2004) Procoagulant surface exposure and apoptosis in rabbit platelets: association with shortened survival and steady-state senescence. J Thromb Haemost 2(4):651–659

    Article  PubMed  CAS  Google Scholar 

  38. Rand ML, Wang H, Bang KWA, Packham MA, Freedman J (2006) Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost 4(7):1621–1623

    Article  PubMed  CAS  Google Scholar 

  39. Rand ML, Wang H, Bang KW, Packham MA, Freedman J (2007) Persistence of phosphatidylserine exposure on activated platelets in vivo in rabbits. Thromb Haemost 98(2):477–478

    PubMed  CAS  Google Scholar 

  40. Leung R, Gwozdz AM, Wang H, Bang KWA, Packham MA, Freedman J, Rand ML (2007) Persistence of procoagulant surface expression on activated human platelets: involvement of apoptosis and aminophospholipid translocase activity. J Thromb Haemost 5(3):560–570

    Article  PubMed  CAS  Google Scholar 

  41. Rand ML, Wang H, Bang KW, Teitel JM, Blanchette VS, Freedman J, Nurden AT (2010) Phosphatidylserine exposure and other apoptotic-like events in Bernard-Soulier syndrome platelets. Am J Hematol 85(8):584–592

    Article  PubMed  CAS  Google Scholar 

  42. Gwozdz AM, Leung R, Wang H, Bang KW, Packham MA, Freedman J, Rand ML (2010) Calpain inhibition by calpeptin does not prevent APLT activity reduction in PS-exposing platelets, but calpeptin has independent pro-apoptotic effects. Thromb Haemost 103(6):1218–1227

    Article  PubMed  CAS  Google Scholar 

  43. Kile BT (2009) The role of the intrinsic apoptosis pathway in platelet life and death. J Thromb Haemost 7(Suppl. s1):214–217

    Article  PubMed  CAS  Google Scholar 

  44. Li S, Wang Z, Liao Y, Zhang W, Shi Q, Yan R, Ruan C, Dai K (2010) The glycoprotein Iba-von Willebrand factor interaction induces platelet apoptosis. Thromb Haemost 8(2):341–350

    Article  CAS  Google Scholar 

  45. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264(3):687–701

    Article  PubMed  CAS  Google Scholar 

  46. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt2):233–249

    Article  PubMed  CAS  Google Scholar 

  47. Jackson SP, Schoenwaelder SM (2010) Procoagulant platelets: are they necrotic? Blood 116(12):2011–2018

    Article  PubMed  CAS  Google Scholar 

  48. White MJ, Kile BT (2010) Apoptotic processes in megacaryocytes and platelets. Semin Hematol 47(3):227–234

    Article  PubMed  CAS  Google Scholar 

  49. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  PubMed  CAS  Google Scholar 

  50. Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91

    Article  PubMed  CAS  Google Scholar 

  51. Augereau O, Rossignol R, DeGiorgi F, Mazat J-P, Letellier T, Dachary-Prigent J (2004) Apoptotic-like mitochondrial events associated phosphatidylserine exposure in blood platelets induced by local anaesthetics. Thromb Haemost 92(1):104–113

    PubMed  CAS  Google Scholar 

  52. Lopez JJ, Salido GM, Gómez-Arteta E, Rosado JA, Pariente JA (2007) Thrombin induces apoptotic events through generation of reactive oxygen species in human platelets. J Thromb Haemost 5(6):1283–1291

    Article  PubMed  CAS  Google Scholar 

  53. Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR, Iciek LA, Morgan SJ, Nasarre MC, Nelson R, Preusser LC, Reinhart GA, Smith ML, Rosenberg SH, Elmore SW, Tse C (2007) Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 14(5):943–951

    PubMed  CAS  Google Scholar 

  54. Dasgupta SK, Argaiz ER, Mercado JE, Maul HO, Garza J, Enriquez AB, Abdel-Monem H, Prakasam A, Andreeff M, Thiagarajan P (2010) Platelet senescence and phosphatidylserine exposure. Transfusion 50(10):2167–2175

    Article  PubMed  CAS  Google Scholar 

  55. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  56. Roy C, Brown DL, Little JE, Valentine BK, Walker PR, Sikorska M, Leblanc J, Chaly N (1992) The topoisomerase II inhibitor teniposide (VM-26) induces apoptosis in unstimulated mature murine lymphocytes. Exp Cell Res 200(2):416–424

    Article  PubMed  CAS  Google Scholar 

  57. Hale AJ, Smith CA, Sutherland LC, Stonerman VEA, Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236(1):1–26

    Article  PubMed  CAS  Google Scholar 

  58. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274(29):20049–20052

    Article  PubMed  CAS  Google Scholar 

  59. Nieuwland R, Sturk A (2007) Platelet-derived microparticles. In: Michelson AD (ed) Platelets, 2nd edn. Academic Press, Amsterdam, pp 403–413

    Chapter  Google Scholar 

  60. Kroll MH, Hellums JD, McIntire LV, Shaffer AI, Moake JL (1996) Platelets and shear stress. Blood 88(5):1525–1541

    PubMed  CAS  Google Scholar 

  61. Darzynkiewicz Z, Huang X, Okafuji M, King MA (2004) Cytometric methods to detect apoptosis. Methods Cell Biol 75:307–341

    Article  PubMed  CAS  Google Scholar 

  62. White JG (2007) Platelet structure. In: Michelson AD (ed) Platelets, 2nd edn. Academic Press, Amsterdam, pp 45–73

    Chapter  Google Scholar 

  63. Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR, Di Paola J (2008) Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 111(3):1257–1265

    Article  PubMed  CAS  Google Scholar 

  64. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  PubMed  CAS  Google Scholar 

  65. Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT (1993) Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood 81(10):2554–2565

    PubMed  CAS  Google Scholar 

  66. Lin KH, Chang HC, Lu WJ, Jayakumar T, Chou HC, Fong TH, Hsiao G, Sheu JR (2009) Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet-activating agents. Platelets 20(8):575–581

    Article  PubMed  CAS  Google Scholar 

  67. Arachiche A, Kerbiriou-Nabias D, Garcin I, Letellier T, Dachary-Prigent J (2009) Rapid procoagulant phosphatidylserine exposure relies on high cytosolic calcium rather than on mitochondrial depolarization. Arterioscler Thromb Vasc Biol 29(11):1883–1889

    Article  PubMed  CAS  Google Scholar 

  68. Keuren JF, Wielders SJ, Ulrichts H, Hackeng T, Heemskerk JW, Deckmyn H, Bevers EM, Lindhout T (2005) Synergistic effect of thrombin on collagen-induced platelet procoagulant activity is mediated through protease-activated receptor-1. Arterioscler Thromb Vasc Biol 25(7):1499–1505

    Article  PubMed  CAS  Google Scholar 

  69. Tonon G, Luo X, Greco NJ, Chen W, Shi Y, Jamieson GA (2002) Weak platelet agonists and U46619 induce apoptosis-like events in platelets, in the absence of phosphatidylserine exposure. Thromb Res 107(6):345–350

    Article  PubMed  CAS  Google Scholar 

  70. Remenyi G, Szasz R, Friese P, Dale GL (2005) Role of mitochondrial permeability transition pore in coated-platelet formation. Arterioscler Thromb Vasc Biol 25(2):467–471

    Article  PubMed  CAS  Google Scholar 

  71. Dale GL, Friese P (2006) Bax activators potentiate coated-platelet formation. J Thromb Haemost 4(12):2664–2669

    Article  PubMed  CAS  Google Scholar 

  72. Schoenwaelder SM, Yuan Y, Josefsson EC, White MJ, Yao Y, Mason KD, O’Reilly LA, Henley KJ, Ono A, Hsiao S, Willcox A, Roberts AW, Huang DC, Salem HH, Kile BT, Jackson SP (2009) Two distinct pathways regulate phosphatidylserine exposure and procoagulant function. Blood 114(3):663–666

    Article  PubMed  CAS  Google Scholar 

  73. Shrivastava M, Vivekanandhan S (2011) An insight into ultrastructural and morphological alterations of platelets in neurodegenerative diseases. Ultrastruct Pathol 35(3):110–116

    Article  PubMed  Google Scholar 

  74. Piguet PF, Kan CD, Vesin C (2002) Thrombocytopenia in an animal model of malaria is associated with an increased caspase-mediated death of thrombocytes. Apoptosis 7(2):91–98

    Article  PubMed  CAS  Google Scholar 

  75. Cohen Z, Gonzales RF, Davis-Gorman G, McDonagh PF (2002) Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: a potential correlation with caspase activation. Thromb Res 107(5):217–221

    Article  PubMed  CAS  Google Scholar 

  76. Nurden AT, Nurden P (2007) Inherited disorders of platelet function. In: Michelson AD (ed) Platelets, 2nd edn. Academic Press, Amsterdam, pp 1029–1050

    Chapter  Google Scholar 

  77. Speer O, Schmugge M, Azzouzi I, Rand ML, Kroiss S (2008) Apoptosis in platelets from pediatric patients with acute immune thrombocytopenic purpura (ITP) is ameliorated by IVIg. Blood 112(11):1172a

    Google Scholar 

  78. Catani L, Fagioli ME, Tazzari PL, Ricci F, Curti A, Rovito M, Preda P, Chirumbolo G, Amabile M, Lemoli RM, Tura S, Conte R, Baccarani M, Vianelli N (2006) Dendritic cells of immune thrombocytopenic purpura (ITP) show increased capacity to present apoptotic platelets to T lymphocytes. Exp Hematol 34(7):879–887

    Article  PubMed  CAS  Google Scholar 

  79. Bonomini M, Dottori S, Amoroso L, Arduini A, Sirolli V (2004) Increased platelet phosphatidylserine exposure and caspase activation in chronic uremia. J Thromb Haemost 2(8):1275–1281

    Article  PubMed  CAS  Google Scholar 

  80. Yeh JJ, Tsai S, Wu DC, Wu JY, Liu TC, Chen A (2010) P-selectin-dependent platelet aggregation and apoptosis may explain the decrease in platelet count during Helicobacter pylori infection. Blood 115(21):4247–4253

    Article  PubMed  CAS  Google Scholar 

  81. Lin KH, Hsiao G, Shih CM, Chou DS, Sheu JR (2009) Mechanisms of resveratrol-induced platelet apoptosis. Cardiovasc Res 83(3):575–585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant T 6285 from the Heart and Stroke Foundation of Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Leytin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyulkhandanyan, A.V., Mutlu, A., Freedman, J. et al. Markers of platelet apoptosis: methodology and applications. J Thromb Thrombolysis 33, 397–411 (2012). https://doi.org/10.1007/s11239-012-0688-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0688-8

Keywords

Navigation