Skip to main content
Log in

Conversion of Rapeseed Oil to Biodiesel on KF/γ-Al2O3 CATALYST

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It is shown that the KF/γ-Al2O3 catalyst obtained by the sol–gel method has a greater activity in the process of transesterification of methanol and rapeseed oil to biodiesel compared to KF/γ-Al2O3 prepared by impregnation. The highest yield of biodiesel (96.5%) is achieved with use of KF/γ-Al2O3, prepared at molar ratio KF to γ-Al2O3 1.3:1. High conversion of rapeseed oil to biodiesel is explained by the relatively high basicity and specific surface of KF/γ-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.

Similar content being viewed by others

References

  1. K. A. Avinash, Prog. Energy Combust. Sci., 33, No. 3, 233-271 (2007), doi: https://doi.org/10.1016/j.pecs.2006.08.003.

    Article  CAS  Google Scholar 

  2. S. Majhi and S. Ray, Environ. Sci. Pollut. Res., 2016, No. 23, 9251-9259, doi:https://doi.org/10.1007/s11356-015-4824-9.

    Article  CAS  Google Scholar 

  3. M. Thawatchai, K. Sibudjing, and W. Chi-Hwa, Energy Convers. Manag., 92, 234-243 (2015). doi:https://doi.org/10.1016/j.enconman.2014.12.057.

    Article  CAS  Google Scholar 

  4. A. J. Dassey, S. G. Hall, and C. S. Theegala, Algal Res., 4, 89-95 (2014), doi: https://doi.org/10.1016/j.algal.2013.12.006.

    Article  Google Scholar 

  5. B. Xu, G. Xiao, L. Cui, et al., Energy Fuel, 21, No. 63, 109-3112 (2007), doi: https://doi.org/10.1021/ef7005035.

    Article  CAS  Google Scholar 

  6. D. Wei and R. D. R Pfeffer, J. Nanopart. Res., 4, 21-41 (2002), doi: https://doi.org/10.1023/A:1020184524538.

    Article  CAS  Google Scholar 

  7. S. Yimer and O. Sahu, Sust. Energy, 3, 81-84 (2014), doi: https://doi.org/10.1080/15567036.2015.1040899.

    Article  CAS  Google Scholar 

  8. L. Wen, T. Wang, and D. Lu, Fuel, 89, 2267-2271 (2010), doi: https://doi.org/10.1016/j.fuel.2010.01.028.

    Article  CAS  Google Scholar 

  9. M. Agarwal, Garima Chauhan, S. P. Chaurasia, and K. Singh, J. Taiwan Inst. Chem. Eng., 43, 89-94 (2012), doi: https://doi.org/10.1016/j.jtice.2011.06.003.

  10. I. A. Musa, Egypt. J. Pet. 25, 21-31 (2016), doi: https://doi.org/10.1016/j.ejpe.2015.06.007.

    Article  Google Scholar 

  11. P. L. Boey, G. P. Maniam, and S. A. Hamid, Chem. Eng. J., 168, 15-22 (2011), doi: https://doi.org/10.1016/j.cej.2011.01.009.

    Article  CAS  Google Scholar 

  12. Y. Zhang, S. Niu, K. Han, and C. Li, Renew. Energy, 168, 981-990 (2020), doi: https://doi.org/10.1016/j.renene.2020.12.132.

    Article  CAS  Google Scholar 

  13. M. Tuan, S. Chandrakantha, and Y. Manawadevi, React. Kinet. Mech. Catal., 1-32 (2021), doi: https://doi.org/10.1007/S11144-021-01958-1.

  14. P. Singh, A. Sharma, N. Kumar, and Y. Singh, Fuel, 291 120218 (2021), doi: https://doi.org/10.1016/j.fuel.2021.120218.

    Article  CAS  Google Scholar 

  15. S. Sunita, M. Deboshree, D. Srikanta, et al., Renew. Energy, 158, 656-667 (2020), doi: https://doi.org/10.1016/j.renene.2020.05.146.

    Article  CAS  Google Scholar 

  16. R. Foroutan, R. Mohammadi, J. Razeghi, and B. Ramavandi, Renew. Energy, 168, 1207-1216 (2021), doi: https://doi.org/10.1016/j.renene.2020.12.094.

    Article  CAS  Google Scholar 

  17. M. Kuniyil, K. Shanmukha, A. Farooq, et al., Arab. J. Chem., 14, 102982 (2021), doi: https://doi.org/10.1016/j.arabjc.2020.102982.

    Article  CAS  Google Scholar 

  18. H. Fukuda, A. Kondo, and H. Noda, J. Biosci. Bioeng., 92, 405-416 (2001), doi: https://doi.org/10.1016/S1389-1723(01)80288-7.

    Article  CAS  PubMed  Google Scholar 

  19. R. Santorio, O. Veloso Claudia, and C. A. Henriques, J. Mol. Catal. A, 422, 234-247 (2016), doi: https://doi.org/10.1016/j.molcata.2015.12.006.

    Article  CAS  Google Scholar 

  20. L. Gao, S. Wang, W. Xu, and G. Xiao, Appl. Energy, 146, 196-201 (2015), doi: https://doi.org/10.1016/j.apenergy.2015.02.068.

    Article  CAS  Google Scholar 

  21. X. Zheng, W. Fan, W. Kong, et al., Kinet. Catal., 55, 592-598 (2014), doi: https://doi.org/10.1134/S002315841405005X.

    Article  CAS  Google Scholar 

  22. P. Qiu, B. Yang, C. Yi, and S. Qi, Catal. Lett., 137, 232-238 (2010), doi: https://doi.org/10.1007/s10562-010-0354-8.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

This work was financially supported by grants from National Natural Science Foundation of China (21306149) and Postgraduate Innovation Fund Project of Xi’an Shiyou University (YCS20211033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tang.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 5, pp. 323-330, September-October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Tao, S., Meng, M. et al. Conversion of Rapeseed Oil to Biodiesel on KF/γ-Al2O3 CATALYST. Theor Exp Chem 57, 377–385 (2021). https://doi.org/10.1007/s11237-021-09708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09708-z

Keywords

Navigation