Skip to main content
Log in

Hyperspectral Image Classification Based on Segmented Local Binary Patterns

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Recently, local binary patterns (LBP) coupled with principal component analysis has been developed for feature extraction of hyperspectral imagery, which has shown success over traditional methods but is limited in physical meaning representation due to the noise bands existing in hyperspectral data. In order to preserve the intrinsic geometrical structure of original data, we propose a segmented LBP (SLBP) to group correlative bands and then extract spatial-spectral features from each band group. The proposed approach employs the LBP operator on independent subspaces to characterize local texture information and distinct spectral signatures, along with a decision fusion system further improving discriminant power. The proposed approach is compared with several traditional and state-of-the-art methods on two benchmark datasets (i.e., the Indian Pines dataset and the Salinas Valley dataset). Experimental results demonstrate that the proposed SLBP strategy can yield superior classification performance (96.8% for the Indian Pines dataset with an improvement of approximately 6.4% and 4.2% when compared with LBP and MELBP, respectively; 98.1% for the Salinas Valley dataset with an improvement of approximately 3.5% and 1.3% compared with LBP and MELBP, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fu, W., Li, S., Fang, L., Kang, X., & Benediktsson, J. A. (2016). Hyperspectral image classification via shape-adaptive joint sparse representation. IEEE Journal of Selected Topics Applied Earth Observations and Remote Sensing, 9(2), 556–567.

    Article  Google Scholar 

  2. Zhang, G., Sun, H., Xia, G., & Sun, Q. (2016). Multiple kernel sparse representation-based orthogonal discriminative projection and its cost-sensitive extension. IEEE Transactions on Image Processing, 25(9), 4271–4285.

    MathSciNet  MATH  Google Scholar 

  3. Li, J., Zhang, H., & Zhang, L. (2015). Efficient superpixel level multitask joint sparse representation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(10), 5338–5351.

    Article  Google Scholar 

  4. Prasad, S., Li, W., Fowler, J. E., & Bruce, L. M. (2012). Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification. IEEE Transactions on Geoscience and Remote Sensing, 50(9), 3474–3486.

    Article  Google Scholar 

  5. Du, Q., & Yang, H. (2008). Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geoscience Remote Sensing Letters, 5(4), 564–568.

    Article  Google Scholar 

  6. Prasad, S., & Bruce, L. M. (2008). Decision fusion with confidence-based weight assignment for hyperspectral target recognition. IEEE Transactions on Geoscience Remote Sensing, 46(5), 1448–1456.

    Article  Google Scholar 

  7. Sun, K., Geng, X., Ji, L., & Lu, Y. (2014). A new band selection method for hyperspectral image based on data quality. IEEE Journal of Selected Topics Applied Earth Observations and Remote Sensing, 7(6), 2697–2703.

    Article  Google Scholar 

  8. Wang, J., Zhang, K., Wang, P., Madani, K., & Sabourin, C. (2017). Unsupervised band selection using block-diagonal sparsity for hyperspectral image classification. IEEE Geoscience Remote Sensing Letters, 14(11), 2062–2066.

    Article  Google Scholar 

  9. Martinez, A. M., & Kak, A. C. (2001). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.

    Article  Google Scholar 

  10. Kang, X., Xiang, X., Li, S., & Benediktsson, J. A. (2017). PCA-based edge-preserving features for hyperspectral image classification. IEEE Transactions on Geoscience Remote Sensing, 55(12), 7140–7151.

    Article  Google Scholar 

  11. Licciardi, G. A., & Chanussot, J. (2015). Nonlinear PCA for visible and thermal hyperspectral images quality enhancement. IEEE Geoscience Remote Sensing Letters, 12(6), 1228–1231.

    Article  Google Scholar 

  12. Jiang, J., Ma, J., Chen, C., Wang, Z., Cai, Z., & Wang, L. (2018). Super PCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience Remote Sensing, 56(8), 4581–4593.

    Article  Google Scholar 

  13. Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, 8(5), 1027–1061.

    MATH  Google Scholar 

  14. Ye, Z., Bai, L., & Nian, Y. (2017). Decision fusion for hyperspectral image classification based on multiple features and locality-preserving analysis. European Journal of Remote Sensing, 5, 166–178.

    Article  Google Scholar 

  15. Li, W., Prasad, S., & Fowler, J. E. (2014). Hyperspectral image classification using Gaussian mixture models and Markov random fields. IEEE Geoscience Remote Sensing Letters, 11(1), 153–157.

    Article  Google Scholar 

  16. Camps-Valls, G., & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience Remote Sensing, 43(6), 1351–1362.

    Article  Google Scholar 

  17. Tarabalka, Y., Fauvel, M., Chanussot, J., & Benediktsson, J. A. (2010). SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience Remote Sensing Letters, 7(4), 736–740.

    Article  Google Scholar 

  18. Huo, L., & Tang, P. (2011). Spectral and Spatial classification of hyperspectral data using SVMs and Gabor texture. In Proceedings of IGARSS (pp. 1708–1711).

  19. Zhang, L., Zhang, L., Tao, D., & Huang, X. (2012). On combining multiple features for hyperspectral remote sensing image classification. IEEE Transactions on Geoscience Remote Sensing, 50(3), 879–893.

    Article  Google Scholar 

  20. Ojala, T., Pietikäinen, M., & Mäenpää, T. T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  MATH  Google Scholar 

  21. Li, W., Chen, C., Su, H., & Du, Q. (2015). Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Transactions on Geoscience Remote Sensing, 53(7), 3681–3693.

    Article  Google Scholar 

  22. Jia, S., Hu, J., Zhu, J., Jia, X., & Li, Q. (2017). Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Transactions on Geoscience Remote Sensing, 55(4), 2399–2413.

    Article  Google Scholar 

  23. Jia, S., Deng, B., Zhu, J., Jia, X., & Li, Q. (2018). Local binary pattern-based hyperspectral imagery classification with superpixel guidance. IEEE Transactions on Geoscience Remote Sensing, 56(2), 749–759.

    Article  Google Scholar 

  24. Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, L., Chen, C., Li, W., & Du, Q. (2016). Remote sensing image scene classification using multi-scale completed local binary patterns and Fisher vectors. Remote Sensing, 8(6), 483.

    Article  Google Scholar 

  26. Ye, Z., Fowler, J. E., & Bai, L. (2017). Spatial-spectral hyperspectral classification using local binary patterns and Markov random fields. Journal of Applied Remote Sensing, 11(3), 035002.

    Article  Google Scholar 

  27. Dundar, T., & InceSparse, T. (2019). Representation-based classification using multiscale superpixels and guided filter. IEEE Geoscience and Remote Sensing Letters, 16(2), 246–250.

    Article  Google Scholar 

  28. Xia, J., Bombrun, L., Berthoumieu, Y., Germain, C., & Du, P. (2017). Spectral-spatial rotation forest for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10), 4605–4613.

    Article  Google Scholar 

  29. Pu, H. Y., Chen, Z., Wang, B., & Jiang, G. M. (2014). A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7008–7022.

    Article  Google Scholar 

  30. Jiang, J., Ma, J., Wang, Z., Chen, C., & Liu, X. (2019). Hyperspectral image classification in the presence of noisy labels. IEEE Transactions on Geoscience Remote Sensing, 57(2), 851–865.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (41601344, 61803042) and Chongqing Research Program of Basic research and Frontier Technology (cstc2016jcyjA0539). The authors would also like to thank the editor and the anonymous reviewers for their insightful comments and suggestions in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Dong, R., Bai, L. et al. Hyperspectral Image Classification Based on Segmented Local Binary Patterns. Sens Imaging 21, 15 (2020). https://doi.org/10.1007/s11220-020-0274-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-0274-7

Keywords

Navigation