Skip to main content

Advertisement

Log in

Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Multi-sensor data fusion has recently received remarkably more attraction in urban land classification. The fusion of multi-resolution and multi-sensor remote sensing data can help in comprehending more information about the same land cover features, thereby, enhancing the classification accuracy. In this field of study, a combination of hyperspectral data in a long-wave infrared range and a very high-resolution data in a visible range has been extensively used for exploring the spectral and spatial features for decision level fusion classification. This paper proposes a novel method of integrating the classifier decisions with the additional ancillary information derived from spectral and spatial features for improvement in the classification accuracy of natural and man-made objects in urban land cover. The paper also presents a detailed performance comparative evaluation of two classifiers i.e., support vector machine (SVM) and artificial neural network (ANN) to show the effectiveness of these classifiers. The results obtained from a decision-based multilevel fusion of spectral and spatial information using hyperspectral and visible data have shown improvement in classification accuracy. The results also reveal that the classification accuracy of the SVM classifier is better than ANN in multi-sensor data using decision level fusion of combined feature set analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
FIG. 4

Similar content being viewed by others

References

  1. Rodriguez-Galiano, V. F., Ghimire, B., Pardo-Iguzquiza, E., Chica-Olmo, M., & Congalton, R. G. (2012). Incorporating the downscaled Landsat TM thermal band in land-cover classification using random forest. Photogrammetric Engineering & Remote Sensing, 78(2), 129–137.

    Article  Google Scholar 

  2. Luo, Xiaoqing, Zhang, Zhancheng, & Xiaojun, Wu. (2016). A novel algorithm of remote sensing image fusion based on shift-invariant Shearlet transform and regional selection. AEU- International Journal of Electronics and Communication., 70(2), 186–197.

    Article  Google Scholar 

  3. Berger, C., Riedel, F., Rosentreter, J., Stein, E., Hese, S., & Schmullius, C. (2015). Fusion of airborne hyperspectral and LiDAR remote sensing data to study the thermal characteristics of urban environments. In Computational Approaches for Urban Environments (pp. 273-292). Springer, Cham.

  4. Ma, Jiayi, Ma, Yong, & Li, Chang. (2018). Infrared and visible image fusion methods and applications: a survey. Information Fusion, 45, 153–178.

    Article  Google Scholar 

  5. Dianat, R., & Kasaei, S. (2010). Dimension reduction of remote sensing images by incorporating spatial and spectral properties. AEU-International Journal of Electronics and Communication, 64(8), 729–732.

    Article  Google Scholar 

  6. Zhang, Lefei, & Tao, Dacheng. (2012). On combining multiple features for hyperspectral remote sensing image classification. IEEE Transaction on Geoscience and Remote Sensing., 50(3), 879–893.

    Article  MathSciNet  Google Scholar 

  7. Bruzzone, L., & Bovolo, F. (2013). A novel framework for the design of change-detection systems for very-highresolution remote sensing images. Proceedings of the IEEE, 101(3), 609–630.

    Article  Google Scholar 

  8. Huang, X., Zhang, L., & Zhu, T. (2014). Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 7(1), 105–115.

    Article  Google Scholar 

  9. Tian, J., Reinartz, P. (2011). Multitemporal 3D change detection in urban areas using stereo information from different sensors. In International Symposium on Image and Data Fusion (pp. 1–4).

  10. Gao, Jianqiang, & Lizhong, Xu. (2015). An efficient method to solve the classification problem for remote sensing. AEU- International Journal of Electronics and Communication, 69(1), 198–205.

    Article  Google Scholar 

  11. Moser, G., & Serpico, S. B. (2013). Benediktsson. Land cover mapping by markov modelling of spatial contextual information in very high-resolution remote sensing images, Proceedings of IEEE., 101(3), 631–651.

    Google Scholar 

  12. Eslami, M., & Mohammadzadeh, A. (2015). Developing a spectral-based strategy for urban object detection from airborne hyperspectral TIR and visible data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1808–1816.

    Article  Google Scholar 

  13. Li, J., Zhang, H., Guo, M., Zhang, L., Shen, H., & Du, Q. (2015). Urban classification by the fusion of thermal infrared hyperspectral and visible data. Photogrammetric Engineering & Remote Sensing, 81(12), 901–911.

    Article  Google Scholar 

  14. Lu, X., Zhang, J., Li, T., & Zhang, G. (2015). Synergetic classification of long-wave infrared hyperspectral and visible images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3546–3557.

    Article  Google Scholar 

  15. Melgani, F., & Serpico, S. B. (2002). A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recognition Letters, 23(9), 1053–1061.

    Article  MATH  Google Scholar 

  16. Bardossy, A., & Samaniego, L. (2002). Fuzzy rule-based classification of remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 40(2), 362–374.

    Article  Google Scholar 

  17. Bruzzone, L., & Cossu, R. (2002). A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Transactions on Geoscience and Remote Sensing, 40(9), 1984–1996.

    Article  MATH  Google Scholar 

  18. Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification Performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  19. Won Hee Lee. (2015). Object-oriented classification of urban areas using lidar and aerial images. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography., 33(3), 173–179.

    Article  Google Scholar 

  20. IEEE GRSS Data Fusion Contest, Presented to Image Analysis and Data Fusion Technical Committee, IEEE Geoscience and Remote Sensing Society (GRSS) (2014).

  21. Haboudane, Driss. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352.

    Article  Google Scholar 

  22. Huang, Xin, & Zhang, Liangpei. (2012). Morphological building/shadow index for building extraction from high- resolution imagery over urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 5(1), 161–172.

    Article  Google Scholar 

  23. Liao, Wenzhi, & Bellens, Rik. (2012). Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 5(4), 1177–1190.

    Article  Google Scholar 

  24. Marceau, D., Howarth, P., Dubois, J., & Gratton, D. (1990). Evaluation of the grey-level co-occurrence matrix method for land-cover classification using Spot imagery. IEEE Transaction of Geoscience Remote Sensing., 28(4), 513–519.

    Article  Google Scholar 

  25. Askarpour, S., Anari, M. S., Brumandnia, A., & Javidi, M. M. (2014). The analysis of connected components and clustering in segmentation of persian texts. Research Journal of Recent Sciences, 3(4), 71–72.

    Google Scholar 

  26. XinHuang, Liangpei Zhang. (2013). An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 257–272.

    Article  Google Scholar 

  27. Luo, Shezhou, Wang, Cheng, Xi, Xiaohuan, Zeng, Hongcheng, Li, Dong, Xia, Shaobo, et al. (2015). Fusion of airborne discrete-return LiDAR and hyperspectral data for land cover classification. Remote Sensing, 8(1), 3–12.

    Article  Google Scholar 

  28. Melgani, Farid. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.

    Article  Google Scholar 

  29. Yuan, Hui, & Van Der Wiele, Cynthia F. (2009). An automated artificial neural network system for land use/land cover classification from LANDSAT TM imagery. Journal of Remote Sensing. ISSN, 2072–4292, 243–265.

    Article  Google Scholar 

  30. Madsen, K., Neilsen, H. B. (2004) Methods for non-linear least squares problems. 2nd Edition.

  31. Licciardi, G. (2009). Decision fusion for the classification of hyperspectral data: outcome of the 2008 GRS-S data fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 47(11), 3857–3865.

    Article  Google Scholar 

  32. Santra, A. K., & Christy, C. J. (2012). Genetic algorithm and confusion matrix for document clustering. International Journal of Computer Science Issues., 9(1), 322–328.

    Google Scholar 

  33. Singh, Kunwar K., Vogler, John B., Shoemaker, Douglas A., & Meentemeyer, Ross K. (2014). LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy. ISPRS Journal of Photogrammetry and Remote Sensing., 74, 110–121.

    Article  Google Scholar 

  34. Liao, W., et al. (2014). IEEE data fusion best paper contest.

  35. Momeni, R., Aplin, P., & Boyd, D. (2016). Mapping complex urban land cover from spaceborne imagery: the influence of spatial resolution, spectral band set and classification approach. Remote Sensing, 8(2), 88.

    Article  Google Scholar 

  36. Rees, D. G. (1987). Foundations of statistics. London: Chapman & Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubeena Vohra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, R., Tiwari, K.C. Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification. Sens Imaging 21, 17 (2020). https://doi.org/10.1007/s11220-020-00280-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-00280-9

Keywords

Navigation