Skip to main content
Log in

GPR Measurements with Advanced Isosurface Rendering Technique for Accurately Characterizing Subsurface Archaeological Structure at Al-Nadura Roman Temple in Egypt

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The application of modern visualization techniques (e.g., isosurface rendering) has been beneficial for the 3D presentation of ground penetrating radar (GPR) datasets, compared to the conventional time-slice imaging method, in order to facilitate GPR data interpretation. In this case study, we concentrate on how to apply isosurface rendering technique to easily interpret and highlight the spatial variations within GPR data in archaeological applications. Isosurface renders are generated from surfaces with equal amplitudes, which are illuminated in the 3D data volume using artificial light that reflects off the surface, where the surfaces appear as 3D shaded images. In this paper, GPR data were acquired with a GSSI SIR2000 system using a 200 MHz shielded antenna and 0.5 m inline spacing in both x- and y-directions at Al-Nadura Temple archaeological site. The main objective of this case study was to image subsurface archaeological structures and potentially characterize cut-off ancient burial tombs inside ferrous sandstone situated at Al-Nadura temple, which date back to the Romans periods in Egypt. According to this case study, we highlighted the importance of isosurface rendering technique analyses towards more intensive GPR data interpretation and target identification. Moreover, by comparing extracted isosurface data with conventional presented time-slice, we demonstrate the radar important interpretability of the advanced visualization methods for precisely characterizing subsurface archaeological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodman, D., & Nishimura, Y. (1993). Ground radar view of Japanese burial mounds. Antiquity, 67(255), 349–354.

    Article  Google Scholar 

  2. Gaballah, M., Grasmueck, M., & Sato, M. (2008). High resolution 3D GPR applied to archaeology for characterizing accurate subsurface structure. In Proceedings of the 119th of SEGJ conference, Tokyo, pp. 157–160.

  3. Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M. T., & Quarta, T. (2002). Application of 3D visualization techniques in the analysis of GPR data for archaeology. Annals of Geophysics, 45(2), 321–337.

    Google Scholar 

  4. Conyers, L. (2016). Ground-penetrating radar mapping using multiple processing and interpretation methods. Remote Sensing, 8(7), 562.

    Article  Google Scholar 

  5. Grasmueck, M. (1996). 3D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics, 61(4), 1050–1064.

    Article  Google Scholar 

  6. Junck, M. B., & Jol, H. M. (2000). Three-dimensional investigation of geomorphic environments using ground-penetrating radar. In International Society for Optical Engineering (SPIE) Proceedings, Vol. 4084, pp. 314–318.

  7. Christie, M., Tsoflias, G. P., Stockli, D. F., & Black, R. (2009). Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging. Journal of Applied Geophysics, 68, 9–16.

    Article  Google Scholar 

  8. Gaballah, M., Goodman, D., Magdy, A., & Hany, S. (2015). Improving target identification and characterization from GPR data using isosurface renders technique. ICEG, UAEU, Al Ain, UAE, 15–18 November 2015, pp. 102–105.

  9. Gaballah, M., Grasmueck, M., & Sato, M. (2018). Characterizing subsurface archaeological structures with full resolution 3D GPR at the early Dynastic Foundations of Saqqara Necropolis, Egypt. Sensing and Imaging, 19(1), 23.

    Article  Google Scholar 

  10. Novo, A., Grasmueck, M., Viggiano, D., & Lorenzo, H. (2008). 3D GPR in archeology: What can be gained from dense data acquisition and processing?. In 12th International Conference on Ground Penetrating Radar 2008, Birmingham, UK.

  11. Claerbout, J. F. (1976). Fundamentals of geophysical data processing. New York: McGraw-Hill Book Co., Inc.

    Google Scholar 

  12. Denham, L. R. (1981). Extending the resolution of seismic reflection exploration. Journal Canadian Society of Exploration Geophysicists, 17, 43–54.

    Google Scholar 

  13. Ebrom, D. A., Li, X. H., McDonald, J. A., & Lu, L. (1995). Bin spacing in land 3-D seismic surveys and horizontal resolution in time slices. The Leading Edge, 14, 37–40.

    Article  Google Scholar 

  14. Grasmueck, M., Weger, R., & Horstmeyer, H. (2005). Full-resolution 3-D GPR imaging. Geophysics, 70(1), K12–K19.

    Article  Google Scholar 

  15. Boniger, U., & Tronicke, J. (2010). Improving the interpretability of 3D GPR data using target–specific attributes: Application to tomb detection. Journal of Archaeological Science, 37, 360–367.

    Article  Google Scholar 

  16. Harry, M. J. (2009). Chapter 15—GPR archaeometery. In Ground penetrating radar: Theory and applications (1 ed.). Amsterdam: Elsevier Science.

  17. Goodman, D., Nishimura, Y., Okita, M., & Hongo, H. (1997). 3-D GPR amplitude rendering of Saitobaru Burial Mound #13. In Filtering, optimization and modelling of geophysical data in archaeological prospecting. Politecnico di Milano, Fondaazione ing. Carlo Maurilio Lerici, 50th Anniversary issue, pp. 93–101.

  18. Piro, S., & Goodman, D. (2013). Advances in imaging of archaeological structures using GPR. In Progress in Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, 12–15 August 2013.

  19. Conyers, L. B., & Goodman, D. (1997). Ground-penetrating radar—An introduction for archaeologists. Lanham: AltaMira Press, A Division of Sage Publications Inc.

    Google Scholar 

  20. Salman, A. B., Howari, F. M., El-Sankary, M. M., Wali, A. M., & Saleh, M. M. (2010). Environmental impact and natural hazards on Kharga Oasis monumental sites, Western Desert of Egypt. Journal of African Earth Sciences, 58(2), 341–353.

    Article  Google Scholar 

  21. Egyptian Monuments Website: https://egyptsites.co.uk/.

  22. Michel, R. (1999). Site militaries romaines de l’oasis de Kharga. Bulletin de l’Institut Fransais d’Archeologie Orientale, 99(1999), 377–396.

    Google Scholar 

  23. Shaaban, F. A., Abbas, A. M., Atya, M. A., & Hafez, M. A. (2009). Ground-penetrating radar exploration for ancient monuments at the Valley of Mummies-Kilo 6, Bahariya Oasis, Egypt. Journal of Applied Geophysics, 68(2), 194–202.

    Article  Google Scholar 

  24. Hawass, Z. (2015). The discovery of the valley of the Golden Mummies at Bahariya Oasis. http://www.guardians.net/hawass/Valley_of_the_Golden_Mummies.htm.

  25. Fakhry, Ahmed. (2003). Bahriyah and Farafra. Cairo: The American University in Cairo Press.

    Google Scholar 

  26. Bonnie, M. S. (2006). Bahariya oasis: In the footsteps of Dinosaur Hunters. THE OSTRACON, the Journal of the Egyptian Study Society, 17(2), 13.

    Google Scholar 

  27. Abd El-Whab, A. (1999). Petrography, fabric analysis and diagenetic history of Upper Cretaceous sandstone, Kharga Oasis, Western Desert, Egypt. Sedimentology of Egypt, 7, 99–117.

    Google Scholar 

  28. Jami H. (2019). Let’s learn how to choose the right antenna for GPR investigations. https://compactequip.com/hand-tools/lets-learn-how-to-choose-the-right-antenna-for-gpr-investigations/.

  29. Geophysical Survey System Inc. (GSSI). (2019). Antennas manual. https://www.geophysical.com/wp-content/uploads/2017/10/GSSI-Antenna-Manual.pdf.

  30. Geophysical Survey System Inc. (GSSI). (2005). Antenna manuals product literature. http://www.ni.com.

  31. Kamei, H., Atya, M., Abdallatif, T. F., Mori, M., & Hemzawy, P. (2002). Ground-penetrating radar and magnetic survey to the west of Al-Zayyan Temple, Kharga Oasis, Al-Wadi Al-Jadeed (New Valley), Egypt. Archaeological Prospection, 9, 93–104.

    Article  Google Scholar 

  32. Atya, M. A., Kamei, H., Abbas, A. M., Shaaban, F. A., Hassaneen, A Gh, Abd Alla, M. A., et al. (2005). Complementary integrated geophysical investigation around Al-Zayyan Temple, Kharga Oasis, Al-Wadi Al-Jadeed (New Valley), Egypt. Archaeological Prospection, 12, 177–189.

    Article  Google Scholar 

  33. Annan, A. P. (2003). Ground penetrating radar principles, procedures and applications. Mississauga, ON: Sensors and Software.

    Google Scholar 

  34. Harry, M. J. (2009). Chapter 1—Electromagnetic principles of ground penetrating radar. In Ground penetrating radar: Theory and applications (1 ed.). Amsterdam: Elsevier.

  35. REFLEXW Software. (2013). Sandmeier Scientific Software, Karlsruhe, Germany. www.sandmeier-geo.de.

  36. Goodman, D. (2009). GPR-SLICE v7.0. http://www.gpr-survey.com.

  37. Novo, A., Lorenzo, H., Rial, F. I., & Solla, M. (2010). Three-dimensional Ground-penetrating radar Strategies over an Indoor Archaeological Site: Convent of Santo Domingo (Lugo, Spain). Archaeological Prospection, 17, 213–222.

    Article  Google Scholar 

  38. Leckebusch, J. (2003). Ground-penetrating radar: A modern three-dimensional prospection method. Archaeological Prospection, 10, 213–240.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank deanship of scientific research, Majmaah University, Kingdom of Saudi Arabia, for funding this work under Project Number 1440-154. Also, the author would like to thank the Egyptian Supreme Council of Antiquities for giving me a permission to use their site (Al-Nadura temple) for GPR survey, and my colleagues in NRIAG, Egypt for their help and support during field work. Moreover I want to express my gratitude to Dr. Dean Goodman for helping me to process the GPR data using his software GPR-Slice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Gaballah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballah, M. GPR Measurements with Advanced Isosurface Rendering Technique for Accurately Characterizing Subsurface Archaeological Structure at Al-Nadura Roman Temple in Egypt. Sens Imaging 20, 40 (2019). https://doi.org/10.1007/s11220-019-0263-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-019-0263-x

Keywords

Navigation