Skip to main content
Log in

Color Image Modification with and without Hue Preservation

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Color image modification is an essential component for several applications and the grayscale transformation is generally mapped to the color image indirectly. Although several techniques have been used for this transfer, they suffer from gamut mapping issue. In this paper, it is aimed to study the mapping of grayscale transformations to the color scale in different perspectives. Modifying the image in different color space than the original retains hue to a promising extent, but suffers from the gamut problem. A generic scheme to map grayscale changes to the color space for all kinds of spatial modification is proposed here. The hue preserving color image enhancement (HPCE) scheme discussed here is free of gamut-mapping issue and shows promising results in transferring the grayscale transformation to the color image in a simplistic manner. The proposed HPCE scheme is analysed qualitatively through visual appearance and quantitatively using color difference metrics SHAME and CID, gray image difference and EBCM measures. Different gray scale transformations such as S-type enhancement and different forms of histogram equalization techniques are applied on Berkeley dataset of 500 images to prove the efficacy of proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gonzalez, R. C., & Woods, R. E. (2009). Digital image processing (3rd ed.). Upper Saddle River: Pearson Prentice hall.

    Google Scholar 

  2. Celik, T., & Tjahjadi, T. (2012). Automatic image equalization and contrast enhancement using Gaussian mixture modeling. IEEE Transactions on Image Processing, 21(1), 145–156. https://doi.org/10.1109/tip.2011.2162419.

    Article  MathSciNet  MATH  Google Scholar 

  3. Naik, S. K., & Murthy, C. A. (2003). Hue-preserving color image enhancement without gamut problem. IEEE Transactions on Image Processing, 12(12), 1591–1598. https://doi.org/10.1109/TIP.2003.819231.

    Article  Google Scholar 

  4. Trahanias, P. E., & Venetsanopoulos, A. N. (1992). Color image enhancement through 3-D histogram equalization. In 11th IAPR international conference on pattern recognition. Vol. III. Conference C: Image, speech and signal analysis (pp. 545–548). IEEE. https://doi.org/10.1109/icpr.1992.202045.

  5. Menotti, D., Najman, L., de Araujo, A., and Facon, J. (2007) A fast hue-preserving histogram equalization method for color image enhancement using a Bayesian framework. In 14th international workshop on systems, signals and image processing, 2007 and 6th EURASIP conference focused on speech and image processing, multimedia communications and services (pp. 414–417). IEEE. https://doi.org/10.1109/iwssip.2007.4381129.

  6. Menotti, D., Najman, L., Facon, J., & De Albuquerque Araújo, A. (2012). Fast hue-preserving histogram equalization methods for color image contrast enhancement. International Journal of Computer Science & Information Technology, 4(5), 243. https://doi.org/10.5121/ijcsit.2012.4519.

    Article  Google Scholar 

  7. Mlsna, P. A., & Rodriguez, J. J. (1995). A multivariate contrast enhancement technique for multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 33(1), 212–216. https://doi.org/10.1109/36.368207.

    Article  Google Scholar 

  8. Nikolova, M., & Steidl, G. (2014). Fast hue and range preserving histogram specification: Theory and new algorithms for color image enhancement. IEEE Transactions on Image Processing, 23(9), 4087–4100. https://doi.org/10.1109/TIP.2014.2337755.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherifi, D., Beghdadi, A., & Belbachir, A. H. (2010). Color contrast enhancement method using steerable pyramid transform. Signal, Image and Video Processing, 4(2), 247–262. https://doi.org/10.1007/s11760-009-0115-6.

    Article  MATH  Google Scholar 

  10. Han, J. H., Yang, S., & Lee, B. U. (2011). A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram. IEEE Transactions on Image Processing, 20(2), 506–512. https://doi.org/10.1109/tip.2010.2068555.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanmandlu, M., Verma, O. P., Kumar, N. K., & Kulkarni, M. (2009). A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Transactions on Instrumentation and Measurement, 58(8), 2867–2879. https://doi.org/10.1109/TIM.2009.2016371.

    Article  Google Scholar 

  12. Sahani, M., Rout, S. K., Panigrahi, A. K., & Acharya, A. S. (2015). Modified color histogram equalization with variable enhancement degree for restoration of skin color. In 2015 international conference on communications and signal processing (ICCSP) (pp. 0616–0621). IEEE. https://doi.org/10.1109/iccsp.2015.7322561.

  13. Pitas, I., & Kiniklis, P. (1996). Multichannel techniques in color image enhancement and modeling. IEEE Transactions on Image Processing, 5(1), 168–171. https://doi.org/10.1109/83.481684.

    Article  Google Scholar 

  14. Buzuloiu, V., Ciuc, M., Rangayyan, R. M., & Vertan, C. (2001). Adaptive-neighborhood histogram equalization of color images. Journal of Electronic Imaging, 10(2), 445–459. https://doi.org/10.1117/1.1353200.

    Article  Google Scholar 

  15. Huang, K., Wang, Q., & Wu, Z. (2004). Color image enhancement and evaluation algorithm based on human visual system. In IEEE international conference on acoustics, speech, and signal processing, 2004. Proceedings.(ICASSP’04) (Vol. 3, pp. iii-721–724 vol. 723). IEEE. https://doi.org/10.1109/icip.1996.561000.

  16. Xianghong, W., Shi-e, Y., & Xinsheng, X. (2007). An effective method to colour medical image enhancement. In IEEE/ICME international conference on complex medical engineering, 2007. CME 2007 (pp. 874–877). IEEE. https://doi.org/10.1109/iccme.2007.4381866.

  17. Song, K. S., Kang, H., & Kang, M. G. (2016). Hue-preserving and saturation-improved color histogram equalization algorithm. JOSA A, 33(6), 1076–1088. https://doi.org/10.1364/JOSAA.33.001076.

    Article  Google Scholar 

  18. Lin, S. C.-F., Wong, C. Y., Rahman, M. A., Jiang, G., Liu, S., Kwok, N., et al. (2015). Image enhancement using the averaging histogram equalization (AVHEQ) approach for contrast improvement and brightness preservation. Computers & Electrical Engineering, 46, 356–370. https://doi.org/10.1016/j.compeleceng.2015.06.001.

    Article  Google Scholar 

  19. Shyu, M.-S., & Leou, J.-J. (1998). A genetic algorithm approach to color image enhancement. Pattern Recognition, 31(7), 871–880. https://doi.org/10.1016/S0031-3203(97)00073-3.

    Article  Google Scholar 

  20. Subhashdas, S. K., Choi, B.-S., Yoo, J.-H., & Ha, Y.-H. (2015). Color image enhancement based on particle swarm optimization with Gaussian mixture. In Color imaging XX: Displaying, processing, hardcopy, and applications (Vol. 9395, pp. 939508). International Society for Optics and Photonics. https://doi.org/10.1117/12.2077381.

  21. Gorai, A., & Ghosh, A. (2011). Hue-preserving color image enhancement using particle swarm optimization. In Recent advances in intelligent computational systems (RAICS), 2011 IEEE (pp. 563–568). IEEE. https://doi.org/10.1109/raics.2011.6069375.

  22. Bassiou, N., & Kotropoulos, C. (2007). Color image histogram equalization by absolute discounting back-off. Computer Vision and Image Understanding, 107(1–2), 108–122. https://doi.org/10.1016/j.cviu.2006.11.012.

    Article  Google Scholar 

  23. Arici, T., Dikbas, S., & Altunbasak, Y. (2009). A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 18(9), 1921–1935. https://doi.org/10.1109/tip.2009.2021548.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480. https://doi.org/10.1109/tce.2010.5681130.

    Article  Google Scholar 

  25. Celik, T., & Tjahjadi, T. (2011). Contextual and variational contrast enhancement. IEEE Transactions on Image Processing, 20(12), 3431–3441. https://doi.org/10.1109/tip.2011.2157513.

    Article  MathSciNet  MATH  Google Scholar 

  26. Chulwoo, L., Chul, L., Young-Yoon, L., & Chang-Su, K. (2012). Power-constrained contrast enhancement for emissive displays based on histogram equalization. IEEE Transactions on Image Processing, 21(1), 80–93. https://doi.org/10.1109/tip.2011.2159387.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kwok, N. M., Jia, X., Wang, D., Chen, S. Y., Fang, G., & Ha, Q. P. (2011). Visual impact enhancement via image histogram smoothing and continuous intensity relocation. Computers & Electrical Engineering, 37(5), 681–694. https://doi.org/10.1016/j.compeleceng.2011.08.002.

    Article  Google Scholar 

  28. Kong, N. S. P., & Ibrahim, H. (2008). Color image enhancement using brightness preserving dynamic histogram equalization. IEEE Transactions on Consumer Electronics, 54(4), 1962–1968. https://doi.org/10.1109/tce.2008.4711259.

    Article  Google Scholar 

  29. Chun-Ming, T., & Zong-Mu, Y. (2008). Contrast enhancement by automatic and parameter-free piecewise linear transformation for color images. IEEE Transactions on Consumer Electronics, 54(2), 213–219. https://doi.org/10.1109/tce.2008.4560077.

    Article  Google Scholar 

  30. Yang, C. C., & Rodriguez, J. J. (1995). Efficient luminance and saturation processing techniques for bypassing color coordinate transformations. In IEEE international conference on systems, man and cybernetics, 1995. Intelligent systems for the 21st century (Vol. 1, pp. 667–672). IEEE. https://doi.org/10.1109/icsmc.1995.537840.

  31. Yang, C. C., & Rodriguez, J. J. (1996). Saturation clipping in the LHS and YIQ color spaces. In n color imaging: Device-independent color, color hard copy, and graphic arts (Vol. 2658, pp. 297–308). International Society for Optics and Photonics. https://doi.org/10.1117/12.236979.

  32. Beghdadi, A., & Le Negrate, A. (1989). Contrast enhancement technique based on local detection of edges. Computer Vision, Graphics, and Image Processing, 46(2), 162–174. https://doi.org/10.1016/0734-189X(89)90166-7.

    Article  Google Scholar 

  33. Pedersen, M., & Hardeberg, J. (2009). A new spatial hue angle metric for perceptual image difference. In International workshop on computational color imaging (pp. 81–90). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03265-3_9.

    Google Scholar 

  34. Preiss, J., & Urban, P. (2012). Image-difference measure optimized gamut mapping. In Color and imaging conference, (Vol. 2012, No. 1, pp. 230–235). Society for Imaging Science and Technology.

  35. Wang, Z., & Hardeberg, J. Y. An adaptive bilateral filter for predicting color image difference. In Color imaging conference, (Vol. 2009, No. 1, pp. 27–31). Society for Imaging Science and Technology.

  36. Zhang, X., & Wandell, B. A. (1996). A spatial extension of CIELAB for digital color image reproduction. In SID international symposium digest of technical papers (vol. 27, pp. 731–734). Society for information display. https://doi.org/10.1889/1.1985127.

    Article  Google Scholar 

  37. Pedersen, M., & Hardeberg, J. Y. (2012). Survey of full-reference image quality metrics. Foundations and Trends in Computer Graphics and Vision. https://doi.org/10.1561/0600000037.

    Article  MATH  Google Scholar 

  38. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861.

    Article  Google Scholar 

  39. Wang, Q., & Ward, R. K. (2007). Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Transaction on Consumer Electronics, 53(2), 757–764. https://doi.org/10.1109/tce.2007.381756.

    Article  Google Scholar 

  40. Poddar, S., Tewary, S., Sharma, D., Karar, V., Ghosh, A., & Pal, S. K. (2013). Non parametric modified histogram equalization for contrast enhancement. IET Image Processing, 7(7), 641–652. https://doi.org/10.1049/iet-ipr.2012.0507.

    Article  Google Scholar 

  41. Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916. https://doi.org/10.1109/TPAMI.2010.161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Poddar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poddar, S., Pedersen, M. & Karar, V. Color Image Modification with and without Hue Preservation. Sens Imaging 19, 35 (2018). https://doi.org/10.1007/s11220-018-0219-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0219-6

Keywords

Navigation