Skip to main content

Advertisement

Log in

Models for Type Ia Supernovae and Related Astrophysical Transients

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • B. Barna, T. Szalai, M. Kromer, W.E. Kerzendorf, J. Vinkó, J.M. Silverman, G.H. Marion, J.C. Wheeler, Abundance tomography of Type Iax SN 2011ay with tardis. Mon. Not. R. Astron. Soc. 471, 4865–4877 (2017).

    Article  ADS  Google Scholar 

  • E. Baron, P.H. Hauschildt, A. Mezzacappa, Radiative transfer in the comoving frame. Mon. Not. R. Astron. Soc. 278, 763–772 (1996)

    Article  ADS  Google Scholar 

  • E. Baron, S. Bongard, D. Branch, P.H. Hauschildt, Spectral modeling of SNe Ia near maximum light: probing the characteristics of hydrodynamical models. Astrophys. J. 645, 480–487 (2006).

    Article  ADS  Google Scholar 

  • S.I. Blinnikov, E.I. Sorokina, Supernova explosions inside carbon-oxygen circumstellar shells. ArXiv e-prints (2010)

  • S.I. Blinnikov, R. Eastman, O.S. Bartunov, V.A. Popolitov, S.E. Woosley, A comparative modeling of supernova 1993J. Astrophys. J. 496, 454–472 (1998).

    Article  ADS  Google Scholar 

  • S. Blondin, D. Kasen, F.K. Röpke, R.P. Kirshner, K.S. Mandel, Confronting 2d delayed-detonation models with light curves and spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 417, 1280–1302 (2011).

    Article  ADS  Google Scholar 

  • S. Blondin, L. Dessart, D.J. Hillier, A.M. Khokhlov, One-dimensional delayed-detonation models of Type Ia supernovae: confrontation to observations at bolometric maximum. Mon. Not. R. Astron. Soc. 429, 2127–2142 (2013).

    Article  ADS  Google Scholar 

  • S. Blondin, L. Dessart, D.J. Hillier, A.M. Khokhlov, Evidence for sub-Chandrasekhar-mass progenitors of Type Ia supernovae at the faint end of the width-luminosity relation. Mon. Not. R. Astron. Soc. 470, 157–165 (2017).

    Article  ADS  Google Scholar 

  • E. Bravo, D. García-Senz, Beyond the bubble catastrophe of Type Ia supernovae: Pulsating reverse detonation models. Astrophys. J. 642, 157–160 (2006).

    Article  ADS  Google Scholar 

  • M. Bulla, S.A. Sim, M. Kromer, I.R. Seitenzahl, M. Fink, F. Ciaraldi-Schoolmann, F.K. Röpke, W. Hillebrandt, R. Pakmor, A.J. Ruiter, S. Taubenberger, Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae. Mon. Not. R. Astron. Soc. 462, 1039–1056 (2016).

    Article  ADS  Google Scholar 

  • A.C. Calder, D.M. Townsley, I.R. Seitenzahl, F. Peng, O.E.B. Messer, N. Vladimirova, E.F. Brown, J.W. Truran, D.Q. Lamb, Capturing the fire: flame energetics and neutronization for Type Ia supernova simulations. Astrophys. J. 656, 313–332 (2007).

    Article  ADS  Google Scholar 

  • F. Ciaraldi-Schoolmann, W. Schmidt, J.C. Niemeyer, F.K. Röpke, W. Hillebrandt, Turbulence in a three-dimensional deflagration model for Type Ia supernovae. I. Scaling properties. Astrophys. J. 696, 1491–1497 (2009).

    Article  ADS  Google Scholar 

  • G. Damköhler, Der Einflußder Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z. Elektrochem. 46(11), 601–652 (1940)

    Google Scholar 

  • L. Dessart, D.J. Hillier, S. Blondin, A. Khokhlov, Critical ingredients of Type Ia supernova radiative-transfer modelling. Mon. Not. R. Astron. Soc. 441, 3249–3270 (2014).

    Article  ADS  Google Scholar 

  • M. Fink, W. Hillebrandt, F.K. Röpke, Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs. Astron. Astrophys. 476, 1133–1143 (2007).

    Article  ADS  Google Scholar 

  • M. Fink, F.K. Röpke, W. Hillebrandt, I.R. Seitenzahl, S.A. Sim, M. Kromer, Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? Astron. Astrophys. 514, 53 (2010).

    Article  ADS  Google Scholar 

  • M. Fink, M. Kromer, I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, S.A. Sim, R. Pakmor, A.J. Ruiter, W. Hillebrandt, Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Mon. Not. R. Astron. Soc. 438, 1762–1783 (2014).

    Article  ADS  Google Scholar 

  • R.J. Foley, R. Chornock, A.V. Filippenko, M. Ganeshalingam, R.P. Kirshner, W. Li, S.B. Cenko, P.J. Challis, A.S. Friedman, M. Modjaz, J.M. Silverman, W.M. Wood-Vasey, SN 2008ha: an extremely low luminosity and exceptionally low energy supernova. Astron. J. 138, 376–391 (2009).

    Article  ADS  Google Scholar 

  • R.J. Foley, P.J. Challis, R. Chornock, M. Ganeshalingam, W. Li, G.H. Marion, N.I. Morrell, G. Pignata, M.D. Stritzinger, J.M. Silverman, X. Wang, J.P. Anderson, A.V. Filippenko, W.L. Freedman, M. Hamuy, S.W. Jha, R.P. Kirshner, C. McCully, S.E. Persson, M.M. Phillips, D.E. Reichart, A.M. Soderberg, Type Iax supernovae: a new class of stellar explosion. Astrophys. J. 767, 57 (2013).

    Article  ADS  Google Scholar 

  • R.J. Foley, S.W. Jha, Y.-C. Pan, W.K. Zheng, L. Bildsten, A.V. Filippenko, D. Kasen, Late-time spectroscopy of Type Iax supernovae. Mon. Not. R. Astron. Soc. 461, 433–457 (2016).

    Article  ADS  Google Scholar 

  • C.L. Fryer, A.J. Ruiter, K. Belczynski, P.J. Brown, F. Bufano, S. Diehl, C.J. Fontes, L.H. Frey, S.T. Holland, A.L. Hungerford, S. Immler, P. Mazzali, C. Meakin, P.A. Milne, C. Raskin, F.X. Timmes, Spectra of Type Ia supernovae from double degenerate mergers. Astrophys. J. 725, 296–308 (2010).

    Article  ADS  Google Scholar 

  • L.R. Gasques, A.V. Afanasjev, E.F. Aguilera, M. Beard, L.C. Chamon, P. Ring, M. Wiescher, D.G. Yakovlev, Nuclear fusion in dense matter: reaction rate and carbon burning. Phys. Rev. C 72(2), 025806 (2005).

    Article  ADS  Google Scholar 

  • D.A. Goldstein, D. Kasen, Evidence for sub-Chandrasekhar mass Type Ia supernovae from an extensive survey of radiative transfer models. Astrophys. J. 852, 33 (2018).

    Article  ADS  Google Scholar 

  • E.P. Hicks, R. Rosner, Gravitationally unstable flames: Rayleigh-Taylor stretching versus turbulent wrinkling. Astrophys. J. 771, 135 (2013).

    Article  ADS  Google Scholar 

  • P. Höflich, J. Stein, On the thermonuclear runaway in Type Ia supernovae: how to run away? Astrophys. J. 568, 779–790 (2002).

    Article  ADS  Google Scholar 

  • P. Höflich, J.C. Wheeler, F.K. Thielemann, Type Ia supernovae: influence of the initial composition on the nucleosynthesis, light curves, and spectra and consequences for the determination of \(\varOmega_{M}\) and \(\varLambda\). Astrophys. J. 495, 617–629 (1998).

    Article  ADS  Google Scholar 

  • B. Hristov, D.C. Collins, P. Hoeflich, C.A. Weatherford, T.R. Diamond, Magneto-hydrodynamical effects on nuclear deflagration fronts in Type Ia supernovae. ArXiv e-prints (2017)

  • A.P. Jackson, D.M. Townsley, A.C. Calder, Power-law wrinkling turbulence-flame interaction model for astrophysical flames. Astrophys. J. 784, 174 (2014).

    Article  ADS  Google Scholar 

  • A. Jerkstrand, Spectra of supernovae in the nebular phase, in Handbook of Supernovae, ed. by A. Alsabti, P. Murdin (Springer, Berlin, 2017), pp. 795–842

    Chapter  Google Scholar 

  • G.C. Jordan IV, C. Graziani, R.T. Fisher, D.M. Townsley, C. Meakin, K. Weide, L.B. Reid, J. Norris, R. Hudson, D.Q. Lamb, The detonation mechanism of the pulsationally assisted gravitationally confined detonation model of type Ia supernovae. Astrophys. J. 759, 53 (2012a).

    Article  ADS  Google Scholar 

  • G.C. Jordan IV, H.B. Perets, R.T. Fisher, D.R. van Rossum, Failed-detonation Supernovae: subluminous low-velocity Ia supernovae and their kicked remnant white dwarfs with iron-rich cores. Astrophys. J. 761, 23 (2012b).

    Article  ADS  Google Scholar 

  • A.H. Karp, G. Lasher, K.L. Chan, E.E. Salpeter, The opacity of expanding media—the effect of spectral lines. Astrophys. J. 214, 161–178 (1977).

    Article  ADS  Google Scholar 

  • D. Kasen, S.E. Woosley, On the origin of the Type Ia supernova width-luminosity relation. Astrophys. J. 656, 661–665 (2007).

    Article  ADS  Google Scholar 

  • D. Kasen, R.C. Thomas, P. Nugent, Time-dependent Monte Carlo radiative transfer calculations for three-dimensional supernova spectra, light curves, and polarization. Astrophys. J. 651, 366–380 (2006).

    Article  ADS  Google Scholar 

  • D. Kasen, F.K. Röpke, S.E. Woosley, The diversity of type Ia supernovae from broken symmetries. Nature 460, 869–872 (2009).

    Article  ADS  Google Scholar 

  • A.M. Khokhlov, Propagation of turbulent flames in supernovae. Astrophys. J. 449, 695–713 (1995).

    Article  ADS  Google Scholar 

  • A.M. Khokhlov, E.S. Oran, J.C. Wheeler, Deflagration-to-detonation transition in thermonuclear supernovae. Astrophys. J. 478, 678–688 (1997).

    Article  ADS  Google Scholar 

  • M. Kromer, S.A. Sim, Time-dependent three-dimensional spectrum synthesis for Type Ia supernovae. Mon. Not. R. Astron. Soc. 398, 1809–1826 (2009).

    Article  ADS  Google Scholar 

  • M. Kromer, S.A. Sim, M. Fink, F.K. Röpke, I.R. Seitenzahl, W. Hillebrandt, Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models. Astrophys. J. 719, 1067–1082 (2010).

    Article  ADS  Google Scholar 

  • M. Kromer, M. Fink, V. Stanishev, S. Taubenberger, F. Ciaraldi-Schoolman, R. Pakmor, F.K. Röpke, A.J. Ruiter, I.R. Seitenzahl, S.A. Sim, G. Blanc, N. Elias-Rosa, W. Hillebrandt, 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 2287–2297 (2013).

    Article  ADS  Google Scholar 

  • M. Kromer, S.T. Ohlmann, R. Pakmor, A.J. Ruiter, W. Hillebrandt, K.S. Marquardt, F.K. Röpke, I.R. Seitenzahl, S.A. Sim, S. Taubenberger, Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha. Mon. Not. R. Astron. Soc. 450, 3045–3053 (2015).

    Article  ADS  Google Scholar 

  • M. Kuhlen, S.E. Woosley, G.A. Glatzmaier, Carbon ignition in Type Ia supernovae. II. A three-dimensional numerical model. Astrophys. J. 640, 407–416 (2006).

    Article  ADS  Google Scholar 

  • H.J.G.L.M. Lamers, J.P. Casinelli, Introduction to Stellar Winds (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  • A.M. Lisewski, W. Hillebrandt, S.E. Woosley, Constraints on the delayed transition to detonation in Type Ia supernovae. Astrophys. J. 538, 831–836 (2000a).

    Article  ADS  Google Scholar 

  • A.M. Lisewski, W. Hillebrandt, S.E. Woosley, J.C. Niemeyer, A.R. Kerstein, Distributed burning in Type Ia supernovae: a statistical approach. Astrophys. J. 537, 405–413 (2000b).

    Article  ADS  Google Scholar 

  • M.R. Magee, R. Kotak, S.A. Sim, M. Kromer, D. Rabinowitz, S.J. Smartt, C. Baltay, H.C. Campbell, T.-W. Chen, M. Fink, A. Gal-Yam, L. Galbany, W. Hillebrandt, C. Inserra, E. Kankare, L. Le Guillou, J.D. Lyman, K. Maguire, R. Pakmor, F.K. Röpke, A.J. Ruiter, I.R. Seitenzahl, M. Sullivan, S. Valenti, D.R. Young, The type Iax supernova, SN 2015H. A white dwarf deflagration candidate. Astron. Astrophys. 589, 89 (2016).

    Article  Google Scholar 

  • P.A. Mazzali, L.B. Lucy, The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. Astron. Astrophys. 279, 447–456 (1993).

    ADS  Google Scholar 

  • P.A. Mazzali, F.K. Röpke, S. Benetti, W. Hillebrandt, A common explosion mechanism for Type Ia supernovae. Science 315, 825–828 (2007).

    Article  ADS  Google Scholar 

  • R. Moll, S.E. Woosley, Multi-dimensional models for double detonation in sub-Chandrasekhar mass white dwarfs. Astrophys. J. 774, 137 (2013).

    Article  ADS  Google Scholar 

  • J.C. Niemeyer, W. Hillebrandt, Turbulent nuclear flames in type Ia supernovae. Astrophys. J. 452, 769–778 (1995).

    Article  ADS  Google Scholar 

  • U.M. Noebauer, S. Taubenberger, S. Blinnikov, E. Sorokina, W. Hillebrandt, Type Ia supernovae within dense carbon- and oxygen-rich envelopes: a model for ‘super-Chandrasekhar’ explosions? Mon. Not. R. Astron. Soc. 463, 2972–2985 (2016).

    Article  ADS  Google Scholar 

  • A. Nonaka, A.J. Aspden, M. Zingale, A.S. Almgren, J.B. Bell, S.E. Woosley, High-resolution simulations of convection preceding ignition in Type Ia supernovae using adaptive mesh refinement. Astrophys. J. 745, 73 (2012).

    Article  ADS  Google Scholar 

  • P. Nugent, E. Baron, D. Branch, A. Fisher, P.H. Hauschildt, Synthetic spectra of hydrodynamic models of Type IA supernovae. Astrophys. J. 485, 812–819 (1997).

    Article  ADS  Google Scholar 

  • S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Pakmor, M. Kromer, F.K. Röpke, S.A. Sim, A.J. Ruiter, W. Hillebrandt, Sub-luminous Type IA supernovae from the mergers of equal-mass white dwarfs with mass \(\sim0.9m_{\odot}\). Nature 463, 61–64 (2010).

    Article  ADS  Google Scholar 

  • R. Pakmor, S. Hachinger, F.K. Röpke, W. Hillebrandt, Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae. Astron. Astrophys. 528, 117 (2011).

    Article  ADS  Google Scholar 

  • R. Pakmor, M. Kromer, S. Taubenberger, S.A. Sim, F.K. Röpke, W. Hillebrandt, Normal Type Ia supernovae from violent mergers of white dwarf binaries. Astrophys. J. 747, 10 (2012).

    Article  ADS  Google Scholar 

  • R. Pakmor, M. Kromer, S. Taubenberger, V. Springel, Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. 770, 8 (2013).

    Article  ADS  Google Scholar 

  • M.M. Phillips, W. Li, J.A. Frieman, S.I. Blinnikov, D. DePoy, J.L. Prieto, P. Milne, C. Contreras, G. Folatelli, N. Morrell, M. Hamuy, N.B. Suntzeff, M. Roth, S. González, W. Krzeminski, A.V. Filippenko, W.L. Freedman, R. Chornock, S. Jha, B.F. Madore, S.E. Persson, C.R. Burns, P. Wyatt, D. Murphy, R.J. Foley, M. Ganeshalingam, F.J.D. Serduke, K. Krisciunas, B. Bassett, A. Becker, B. Dilday, J. Eastman, P.M. Garnavich, J. Holtzman, R. Kessler, H. Lampeitl, J. Marriner, S. Frank, J.L. Marshall, G. Miknaitis, M. Sako, D.P. Schneider, K. van der Heyden, N. Yasuda, The peculiar SN 2005hk: do some Type Ia supernovae explode as deflagrations? Publ. Astron. Soc. Pac. 119, 360–387 (2007).

    Article  ADS  Google Scholar 

  • P.A. Pinto, R.G. Eastman, The physics of Type Ia supernova light curves. II. Opacity and diffusion. Astrophys. J. 530, 757–776 (2000).

    Article  ADS  Google Scholar 

  • T. Plewa, A.C. Calder, D.Q. Lamb, Type Ia supernova explosion: gravitationally confined detonation. Astrophys. J. 612, 37–40 (2004).

    Article  ADS  Google Scholar 

  • A.Y. Poludnenko, T.A. Gardiner, E.S. Oran, Spontaneous transition of turbulent flames to detonations in unconfined media. Phys. Rev. Lett. 107(5), 054501 (2011).

    Article  ADS  Google Scholar 

  • M. Reinecke, W. Hillebrandt, J.C. Niemeyer, R. Klein, A. Gröbl, A new model for deflagration fronts in reactive fluids. Astron. Astrophys. 347, 724–733 (1999)

    ADS  Google Scholar 

  • F.K. Röpke, Combustion in thermonuclear supernova explosions, in Handbook of Supernovae, ed. by A. Alsabti, P. Murdin (Springer, Berlin, 2017), pp. 1185–1209

    Chapter  Google Scholar 

  • F.K. Röpke, J.C. Niemeyer, Delayed detonations in full-star models of type Ia supernova explosions. Astron. Astrophys. 464, 683–686 (2007).

    Article  ADS  Google Scholar 

  • F.K. Röpke, W. Schmidt, Turbulent combustion in thermonuclear supernovae, in Interdisciplinary Aspects of Turbulence, ed. by W. Hillebrandt, F. Kupka Lecture Notes in Physics (Springer, Berlin, 2009), pp. 255–289.

    Google Scholar 

  • F.K. Röpke, S.E. Woosley, W. Hillebrandt, Off-center ignition in Type Ia supernovae. I. Initial evolution and implications for delayed detonation. Astrophys. J. 660, 1344–1356 (2007).

    Article  ADS  Google Scholar 

  • A.J. Ruiter, S.A. Sim, R. Pakmor, M. Kromer, I.R. Seitenzahl, K. Belczynski, M. Fink, M. Herzog, W. Hillebrandt, F.K. Röpke, S. Taubenberger, On the brightness distribution of Type Ia supernovae from violent white dwarf mergers. Mon. Not. R. Astron. Soc. 429, 1425–1436 (2013).

    Article  ADS  Google Scholar 

  • R. Scalzo, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard, C. Buton, F. Cellier-Holzem, M. Childress, N. Chotard, Y. Copin, H.K. Fakhouri, E. Gangler, J. Guy, A.G. Kim, M. Kowalski, M. Kromer, J. Nordin, P. Nugent, K. Paech, R. Pain, E. Pecontal, R. Pereira, S. Perlmutter, D. Rabinowitz, M. Rigault, K. Runge, C. Saunders, S.A. Sim, G. Smadja, C. Tao, S. Taubenberger, R.C. Thomas, B.A. Weaver (Nearby Supernova Factory), Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Mon. Not. R. Astron. Soc. 440, 1498–1518 (2014).

    Article  ADS  Google Scholar 

  • W. Schmidt, J.C. Niemeyer, W. Hillebrandt, F.K. Röpke, A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to type Ia supernovae. Astron. Astrophys. 450, 283–294 (2006).

    Article  ADS  Google Scholar 

  • W. Schmidt, F. Ciaraldi-Schoolmann, J.C. Niemeyer, F.K. Röpke, W. Hillebrandt, Turbulence in a three-dimensional deflagration model for Type Ia supernovae. II. Intermittency and the deflagration-to-detonation transition probability. Astrophys. J. 710, 1683–1693 (2010).

    Article  ADS  Google Scholar 

  • I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, M. Fink, W. Hillebrandt, M. Kromer, R. Pakmor, A.J. Ruiter, S.A. Sim, S. Taubenberger, Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013).

    Article  ADS  Google Scholar 

  • I.R. Seitenzahl, M. Kromer, S.T. Ohlmann, F. Ciaraldi-Schoolmann, K. Marquardt, M. Fink, W. Hillebrandt, R. Pakmor, F.K. Röpke, A.J. Ruiter, S.A. Sim, S. Taubenberger, Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. Astron. Astrophys. 592, 57 (2016).

    Article  ADS  Google Scholar 

  • G.J. Sharpe, The structure of steady detonation waves in Type Ia supernovae: pathological detonations in C-O cores. Mon. Not. R. Astron. Soc. 310, 1039–1052 (1999).

    Article  ADS  Google Scholar 

  • K.J. Shen, L. Bildsten, Thermally stable nuclear burning on accreting white dwarfs. Astrophys. J. 660, 1444–1450 (2007).

    Article  ADS  Google Scholar 

  • K.J. Shen, L. Bildsten, The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys. J. 785, 61 (2014).

    Article  ADS  Google Scholar 

  • K.J. Shen, S. Toonen, O. Graur, The evolution of the Type Ia supernova luminosity function. Astrophys. J. 851, 50 (2017).

    Article  ADS  Google Scholar 

  • T. Shigeyama, K. Nomoto, H. Yamaoka, F. Thielemann, Possible models for the Type IA supernova 1990N. Astrophys. J. 386, 13–16 (1992).

    Article  ADS  Google Scholar 

  • S.A. Sim, F.K. Röpke, W. Hillebrandt, M. Kromer, R. Pakmor, M. Fink, A.J. Ruiter, I.R. Seitenzahl, Detonations in sub-Chandrasekhar-mass C + O white dwarfs. Astrophys. J. 714, 52–57 (2010).

    Article  ADS  Google Scholar 

  • S.A. Sim, I.R. Seitenzahl, M. Kromer, F. Ciaraldi-Schoolmann, F.K. Röpke, M. Fink, W. Hillebrandt, R. Pakmor, A.J. Ruiter, S. Taubenberger, Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 333–347 (2013).

    Article  ADS  Google Scholar 

  • V.V. Sobolev, Moving Envelopes of Stars (Harvard University Press, Cambridge, 1960)

    Book  Google Scholar 

  • M.D. Stritzinger, S. Valenti, P. Hoeflich, E. Baron, M.M. Phillips, F. Taddia, R.J. Foley, E.Y. Hsiao, S.W. Jha, C. McCully, V. Pandya, J.D. Simon, S. Benetti, P.J. Brown, C.R. Burns, A. Campillay, C. Contreras, F. Förster, S. Holmbo, G.H. Marion, N. Morrell, G. Pignata, Comprehensive observations of the bright and energetic Type Iax SN 2012Z: interpretation as a Chandrasekhar mass white dwarf explosion. Astron. Astrophys. 573, 2 (2015).

    Article  ADS  Google Scholar 

  • S. Taubenberger, The extremes of thermonuclear supernovae, in Handbook of Supernovae, ed. by A. Alsabti, P. Murdin (Springer, Cham, 2017), pp. 317–373

    Chapter  Google Scholar 

  • F.X. Timmes, S.E. Woosley, The conductive propagation of nuclear flames. I. Degenerate C + O and O + Ne + Mg white dwarfs. Astrophys. J. 396, 649–667 (1992).

    Article  ADS  Google Scholar 

  • C. Travaglio, W. Hillebrandt, M. Reinecke, F.-K. Thielemann, Nucleosynthesis in multi-dimensional SN Ia explosions. Astron. Astrophys. 425, 1029–1040 (2004).

    Article  ADS  Google Scholar 

  • N. Vladimirova, G.V. Weirs, L. Ryzhik, Flame capturing with an advection-reaction-diffusion model. Combust. Theory Model. 10(5), 727–747 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S.E. Woosley, Type Ia supernovae: burning and detonation in the distributed regime. Astrophys. J. 668, 1109–1117 (2007).

    Article  ADS  Google Scholar 

  • S.E. Woosley, D. Kasen, Sub-Chandrasekhar mass models for supernovae. Astrophys. J. 734, 38 (2011).

    Article  ADS  Google Scholar 

  • S.E. Woosley, D. Kasen, S. Blinnikov, E. Sorokina, Type Ia supernova light curves. Astrophys. J. 662, 487–503 (2007).

    Article  ADS  Google Scholar 

  • S.E. Woosley, A.R. Kerstein, V. Sankaran, A.J. Aspden, F.K. Röpke, Type Ia supernovae: calculations of turbulent flames using the Linear Eddy Model. Astrophys. J. 704, 255–273 (2009).

    Article  ADS  Google Scholar 

  • S.E. Woosley, A.R. Kerstein, A.J. Aspden, Flames in type Ia supernova: deflagration-detonation transition in the oxygen-burning flame. Astrophys. J. 734, 37 (2011).

    Article  ADS  Google Scholar 

  • Y.B. Zel’dovich, V.B. Librovich, G.M. Makhviladze, G.I. Sivashinskii, On the onset of detonation in a nonuniformly heated gas. J. Appl. Mech. Tech. Phys. 11, 264–270 (1970).

    Article  ADS  Google Scholar 

  • M. Zingale, S.E. Woosley, C.A. Rendleman, M.S. Day, J.B. Bell, Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in Type Ia supernovae. Astrophys. J. 632, 1021–1034 (2005).

    Article  ADS  Google Scholar 

  • M. Zingale, A.S. Almgren, J.B. Bell, A. Nonaka, S.E. Woosley, Low Mach number modeling of Type IA supernovae. IV. White dwarf convection. Astrophys. J. 704, 196–210 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of FKR is supported by the Klaus Tschira Foundation and by the Collaborative Research Center SFB 881 “The Milky Way System” (subproject A10) of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich K. Röpke.

Additional information

Supernovae

Edited by Andrei Bykov, Roger Chevalier, John Raymond, Friedrich-Karl Thielemann, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röpke, F.K., Sim, S.A. Models for Type Ia Supernovae and Related Astrophysical Transients. Space Sci Rev 214, 72 (2018). https://doi.org/10.1007/s11214-018-0503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0503-8

Keywords

Navigation