Skip to main content
Log in

Narrowband Spikes Observed During the 13 June 2012 Flare in the 800 – 2000 MHz Range

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Narrowband (∼5 MHz) and short-lived (∼0.01 s) spikes with three different distributions in the 800 – 2000 MHz radio spectrum of the 13 June 2012 flare are detected and analyzed. We designate them as SB (spikes distributed in a broad band or bands), SZ (spikes distributed in zebra-like bands) and SBN (spikes distributed in broad and narrow bands). On analyzing AIA/SDO images of the active region NOAA 11504, a rough correspondence between groups of the spikes observed at 1000 MHz and peaks in the time profiles of AIA channels taken from the flare subarea close to the leading sunspot is found. Among the types of spikes the SZ type is the most interesting because it resembles zebras. Therefore, using autocorrelation and crosscorrelation methods we compare SZ and SBN spikes with the typical zebra observed in the same frequency range. While the ratio of SZ band frequencies with their frequency separation (220 MHz) is about 4, 5, and 6, in the zebra the frequency stripe separation is about 24 MHz and the ratio is around 50. Moreover, the bandwidth of SZ bands, which consists of clouds of narrowband spikes, is much broader than that of zebra stripes. This comparison indicates that SZ spikes are generated in a different way from the zebra, but in a similar way to SBN spikes. We successfully fit the SZ band frequencies by the Bernstein modes. Based on this fitting we interpret SZ and SBN spikes as those generated in the model of Bernstein modes. Thus, the magnetic field and plasma density in the SZ spike source are estimated to be about 79 G and 8.4 × 109 cm−3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bárta, M., Karlický, M.: 2001, Turbulent plasma model of the narrowband dm spikes. Astron. Astrophys. 379, 1045. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benáček, J., Karlický, M.: 2019, Growth rates of the electrostatic waves in radio zebra models. Astrophys. J. 881, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 1986, Millisecond radio spikes. Solar Phys. 104, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 1993, Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae 184. DOI. ADS.

    Book  Google Scholar 

  • Bouratzis, C., Hillaris, A., Alissandrakis, C.E., Preka-Papadema, P., Moussas, X., Caroubalos, C., Tsitsipis, P., Kontogeorgos, A.: 2016, High resolution observations with Artemis-IV and the NRH. I. Type-IV associated narrow-band bursts. Astron. Astrophys. 586, A29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clarkson, D.L., Kontar, E.P., Gordovskyy, M., Chrysaphi, N., Vilmer, N.: 2021, First frequency-time-resolved imaging spectroscopy observations of solar radio spikes. Astrophys. J. Lett. 917, L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dabrowski, B.P., Benz, A.O.: 2009, Correlation between decimetric radio emission and hard X-rays in solar flares. Astron. Astrophys. 504, 565. DOI. ADS.

    Article  ADS  Google Scholar 

  • Droege, F.: 1977, Millisecond fine-structures of solar burst radiation in the range 0.2 – 1.4 GHz. Astron. Astrophys. 57, 285. ADS.

    ADS  Google Scholar 

  • Duncan, R.A.: 1979, Wave ducting of solar metre-wave radio emission as an explanation of fundamental/harmonic source coincidence and other anomalies. Solar Phys. 63, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fleishman, G.D., Mel’nikov, V.F.: 1998, Reviews of topical problems: millisecond solar radio spikes. Phys. Usp. 41, 1157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiřička, K., Karlický, M.: 2008, Narrowband pulsating decimeter structure observed by the new Ondřejov solar radio spectrograph. Solar Phys. 253, 95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M.: 1984, Narrowband DM spikes as indication of flare mass ejection. Solar Phys. 92, 329. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Benáček, J., Rybák, J.: 2021, Narrowband spikes observed during the 2013 November 7 flare. Astrophys. J. 910, 108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Sobotka, M., Jiřička, K.: 1996, Narrowband dm-spikes in the 2 GHz frequency range and MHD cascading waves in reconnection outflows. Solar Phys. 168, 375. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2021, Spatial quasi-periodic variations of the plasma density and magnetic field in zebra radio sources. Astron. Astrophys. 646, A179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kerdraon, A., Delouis, J.-M.: 1997, In: Trottet, G. (ed.) The Nançay Radioheliograph 483, 192. DOI. ADS.

    Chapter  Google Scholar 

  • Khan, J.I., Aurass, H.: 2006, Observations of the coronal dynamics associated with solar radio spike burst emission. Astron. Astrophys. 457, 319. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Benz, A.O.: 1994, The frequency ratio of bands of microwave spikes during solar flares. Astron. Astrophys. 285, 1038. ADS.

    ADS  Google Scholar 

  • Kuijpers, J., van der Post, P., Slottje, C.: 1981, Runaway acceleration in a radio flare. Astron. Astrophys. 103, 331. ADS.

    ADS  Google Scholar 

  • Kuznetsov, A.A., Chrysaphi, N., Kontar, E.P., Motorina, G.: 2020, Radio echo in the turbulent corona and simulations of solar drift-pair radio bursts. Astrophys. J. 898, 94. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luo, Y., Chen, B., Yu, S., Bastian, T.S., Krucker, S.: 2021, Radio spectral imaging of an M8.4 eruptive solar flare: possible evidence of a termination shock. Astrophys. J. 911, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • Melnik, V.N., Shevchuk, N.V., Konovalenko, A.A., Rucker, H.O., Dorovskyy, V.V., Poedts, S., Lecacheux, A.: 2014, Solar decameter spikes. Solar Phys. 289, 1701. DOI. ADS.

    Article  ADS  Google Scholar 

  • Melrose, D.B.: 2017, Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Melrose, D.B., Dulk, G.A.: 1982, Electron-cyclotron masers as the source of certain solar and stellar radio bursts. Astrophys. J. 259, 844. DOI. ADS.

    Article  ADS  Google Scholar 

  • Messmer, P., Benz, A.O.: 2000, The minimum bandwidth of narrowband spikes in solar flare decimetric radio waves. Astron. Astrophys. 354, 287. ADS.

    ADS  Google Scholar 

  • Motorina, G.G., Fleishman, G.D., Kontar, E.P.: 2020, Spatiotemporal energy partitioning in a nonthermally dominated two-loop solar flare. Astrophys. J. 890, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ni, S., Chen, Y., Li, C., Zhang, Z., Ning, H., Kong, X., Wang, B., Hosseinpour, M.: 2020, Plasma emission induced by electron cyclotron maser instability in solar plasmas with a large ratio of plasma frequency to gyrofrequency. Astrophys. J. Lett. 891, L25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nita, G.M., Fleishman, G.D., Gary, D.E., Marin, W., Boone, K.: 2014, Fitting FFT-derived spectra: theory, tool, and application to solar radio spike decomposition. Astrophys. J. 789, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Robinson, R.D.: 1983, Scattering of radio waves in the solar corona. Proc. Astron. Soc. Aust. 5, 208. DOI. ADS (ISSN 0066-9997).

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Staehli, M., Magun, A.: 1986, The microwave spectrum of solar millisecond spikes. Solar Phys. 104, 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stepanov, A.V., Kliem, B., Krüger, A., Hildebrand t, J., Garaimov, V.I.: 1999, Second-harmonic plasma radiation of magnetically trapped electrons in stellar coronae. Astrophys. J. 524, 961. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tajima, T., Benz, A.O., Thaker, M., Leboeuf, J.N.: 1990, Enhanced radiation driven by a DC electric field. Astrophys. J. 353, 666. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wentzel, D.G.: 1991, Direct radiation from a strong DC electric field. Astrophys. J. 373, 285. DOI. ADS.

    Article  ADS  Google Scholar 

  • Willes, A.J., Robinson, P.A.: 1996, Electron-cyclotron maser theory for noninteger ratio emission frequencies in solar microwave spike bursts. Astrophys. J. 467, 465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhelezniakov, V.V., Zlotnik, E.I.: 1975, Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. I: Bernstein modes and plasma waves in a hybrid band. Solar Phys. 43, 431. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zlotnik, E.Y.: 2013, Instability of electrons trapped by the coronal magnetic field and its evidence in the fine structure (zebra pattern) of solar radio spectra. Solar Phys. 284, 579. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M.K. acknowledges support from the project RVO-67985815 and GA ČR grants 20-09922J, 20-07908S, 21-16508J and 22-34841S. J.R. acknowledges support by the Science Grant Agency project VEGA 2/0048/20 (Slovakia), J.B. acknowledges support by the German Science Foundation (DFG) project BU 777-17-1, and J.K. acknowledges support by GA ČR grant 19-09489S. Help of the Bilateral Mobility Project SAV-18-01 of the SAS and CAS is acknowledged as well. We also acknowledge the use of the Fermi Solar Flare Observations facility funded by the Fermi GI program. Data supplied courtesy of the SDO/HMI and SDO/AIA consortia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Rybák.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlický, M., Rybák, J., Benáček, J. et al. Narrowband Spikes Observed During the 13 June 2012 Flare in the 800 – 2000 MHz Range. Sol Phys 297, 54 (2022). https://doi.org/10.1007/s11207-022-01989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01989-4

Keywords

Navigation