Skip to main content
Log in

On the integrated mean squared error of wavelet density estimation for linear processes

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

Let \(\{X_n: n\in {{\mathbb {N}}}\}\) be a linear process with density function \(f(x)\in L^2({{\mathbb {R}}})\). We study wavelet density estimation of f(x). Under some regular conditions on the characteristic function of innovations, we achieve, based on the number of nonzero coefficients in the linear process, the minimax optimal convergence rate of the integrated mean squared error of density estimation. Considered wavelets have compact support and are twice continuously differentiable. The number of vanishing moments of mother wavelet is proportional to the number of nonzero coefficients in the linear process and to the rate of decay of characteristic function of innovations. Theoretical results are illustrated by simulation studies with innovations following Gaussian, Cauchy and chi-squared distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baernstein A (2019) Symmetrization in analysis, with David Drasin and Richard S. Laugesen. New Mathematical Monographs, 36. Cambridge University Press, Cambridge

  • Bailey WN (1935) General hypergeometric series. Cambridge tracts in mathematics and mathematical physics

  • Badaoui M, Rhomari N (2015) Blockshrink wavelet density estimator in \(\phi \)-mixing framework, Functional Statistics and Applications. Springer, Berlin, pp 29–50

  • Chesneau C (2012) Wavelet linear estimation of a density and its derivatives from observations of mixtures under quadrant dependence. ProbStat Forum 5:38–46

    MathSciNet  MATH  Google Scholar 

  • Chesneau C (2014) A general result on the mean integrated squared error of the hard thresholding wavelet estimator under \(\alpha \)-mixing dependence. J Probab Stat, Article ID: 403764

  • Chesneau C, Dewan I, Doosti H (2012) Wavelet linear density estimation for associated stratified size-biased sample. J Nonparametric Stat 24(2):429–45

    Article  MathSciNet  MATH  Google Scholar 

  • Chesneau C, Doosti H, Stone L (2019) Adaptive wavelet estimation of a function from an \(m\)-dependent process with possibly unbounded \(m\). Commun Stat - Theory Methods 48:1123–1135

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Springer, New York

    Book  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90:1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1995) Wavelet shrinkage: asymptopia? J R Stat Soc B 57:301–369

    MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1996) Density estimation by wavelet thresholding. Ann Stat 24:508–539

    Article  MathSciNet  MATH  Google Scholar 

  • Faÿ G, Moulines E, Roueff F, Taqqu MS (2009) Estimators of long-memory: Fourier versus wavelets. J Econom 151:159–177

    Article  MathSciNet  MATH  Google Scholar 

  • Folland G (1999) Real analysis: modern techniques and their applications. Wiley, New York

    MATH  Google Scholar 

  • Gannaz I, Wintenberger O (2010) Adaptive density estimation with dependent observations. ESAIM Probab Stat 14:151–172

    Article  MathSciNet  MATH  Google Scholar 

  • Gauss F (1866) Disquisitiones generales circa sericm infinitam, Ges. Werke, 3, 123–163 and 207–229

  • Giné E, Madych WR (2014) On wavelet projection kernels and the integrated squared error in density estimation. Stat Probab Lett 91:32–40

    Article  MathSciNet  MATH  Google Scholar 

  • Giraitis L, Koul HL, Surgailis D (1996) Asymptotic normality of regression estimators with long memory errors. Stat Probab Lett 29:317–335

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Hart JD (1990) Convergence rates in density estimation for data from infinite-order moving average processes. Probab Theory Relat Fields 87:253–274

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone IM (1999) Wavelets and the theory of non-parametric function estimation. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 357(1760):2475–2493

    Article  MathSciNet  MATH  Google Scholar 

  • Kou JK, Guo HJ (2018) Wavelet density estimation for mixing and size-biased data. J Inequalities Appl, p 189

  • Leblanc F (1996) Wavelet linear density estimator for a discrete time stochastic process: Lp-losses. Stat Probab Lett 27:71–84

    Article  MATH  Google Scholar 

  • Li L, Zhang B (2022) Nonlinear wavelet-based estimation to spectral density for stationary non-Gaussian linear processes. Appl Comput Harmon Anal 60:176–204

    Article  MathSciNet  MATH  Google Scholar 

  • Lu L (2013) On the integrated squared error of the linear wavelet density estimator. J Stat Plan Inference 143:1548–1565

    Article  MathSciNet  MATH  Google Scholar 

  • Lukacs E (1970) Characteristic functions, 2nd edn. Griffin & Co., London

    MATH  Google Scholar 

  • Marron JS (1994) Visual understanding of higher order kernels. J Comput Graph Stat 3:447–458

    Google Scholar 

  • Meloche J (1990) Asymptotic behavior of the mean integrated squared error of kernel density estimators for dependent observations. Can J Statistics 18(3):205–211

    Article  MathSciNet  MATH  Google Scholar 

  • Mielniczuk J (1997) On the asymptotic mean integrated squared error of a kernel density estimator for dependent data. Stat Probab Lett 34:53–58

    Article  MathSciNet  MATH  Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic Press, New York

    MATH  Google Scholar 

  • Saavedra A, Cao R (2000) On the estimation of the marginal density of a moving average process. Can J Stat 28(4):799–815

    Article  MathSciNet  MATH  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes. Chapman and Hall, New York

    MATH  Google Scholar 

  • Sang H, Sang Y (2017) Memory properties of transformations of linear processes. Stat. Inference Stoch. Process. 20:79–103

    Article  MathSciNet  MATH  Google Scholar 

  • Sang H, Sang Y, Xu F (2018) Kernel entropy estimation for linear processes. J Time Ser Anal 39(4):563–591

    Article  MathSciNet  MATH  Google Scholar 

  • Stein E, Shakarchi R (2003) Complex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Wahba G (1975) Optimal convergence properties of variable knot, kernel and orthogonal series methods for density estimation. Annu Stat 3:15–29

    Article  MathSciNet  MATH  Google Scholar 

  • Wu WB, Mielniczuk J (2002) Kernel density estimation for linear processes. Annu Stat 30(5):1441–1459

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Zheng Z (1999) On the asymptotic normality for the \(L_2\)-error of wavelet density estimators with application. Commun Stat - Theory Methods 28:1093–1104

    Article  MATH  Google Scholar 

  • Zygmund A (1966) Trigonometric series, vol I, II. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Johannes Schmidt-Hieber and Fangjun Xu for many helpful comments. We are also grateful to the reviewers for numerous constructive remarks and comments that helped to improve the manuscript. The research of Aleksandr Beknazaryan and Peter Adamic is partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN-2017-05595. The research of Hailin Sang is partially supported by the Simons Foundation Grant 586789, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Beknazaryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beknazaryan, A., Sang, H. & Adamic, P. On the integrated mean squared error of wavelet density estimation for linear processes. Stat Inference Stoch Process 26, 235–254 (2023). https://doi.org/10.1007/s11203-022-09281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-022-09281-9

Keywords

Mathematics Subject Classification

Navigation