Skip to main content
Log in

Isometric method: Efficient tool for solving non-linear inverse problems

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A novel algorithm called Isometric Method (IM) for solving smooth real-valued non-linear inverse problems has been developed. Model and data spaces are represented by using m + 1 corresponding vectors at a time (m is the dimension of model space). Relations among vectors in the data space are set up and then transferred into the model space thus generating a new model. If the problem is truly linear, this new model is the exact solution of the inverse problem. If the problem is non-linear, the whole procedure has to be repeated iteratively. The basic underlying idea of IM is to postulate the distance in the model space in such a way that the model and data spaces are isometric, i.e. distances in both spaces have the same measure. As all model-data vector pairs are used many times in successive iterations, the number of the forward problem computations is minimized. There is no necessity to deal with derivatives. The requirement for the computer memory is low. IM is suitable especially for solving smooth medium non-linear problems when forward modelling is time-consuming and minimizing the number of function evaluations is topical. Applications of IM on synthetic and real geophysical problems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K. and Richards P.G., 1980. Quantitative Seismology. Theory and Methods. W.H. Freeman and Company, San Francisco, USA.

    Google Scholar 

  • Aster R.C., Borchers B. and Thurber C.H., 2005. Parameter Estimation and Inverse Problems. Elsevier, IBSN 0-12-065604-3, USA.

  • Bäck T. and Schwefel H.P., 1995. Evolution strategies I: Variants and their computational implementation. In: J. Périaux and G. Winter (Eds.), Genetic Algorithms in Engineering and Computer Science, John Wiley & Sons Ltd., New York, 111–126.

    Google Scholar 

  • Backus G. and Mulcahy M., 1976a. Moment tensors and other phenomenological descriptions of seismic sources. Continuous displacements. Geophys. J. Royal Astron. Soc., 46(2), 341–361.

    Google Scholar 

  • Backus G. and Mulcahy M., 1976b. Moment tensors and other phenomenological descriptions of seismic sources. Discontinuous displacements. Geophys. J. Royal Astron. Soc., 47(2), 301–329.

    Google Scholar 

  • Baish S., Bohnhoff M., Ceranna L, Tu Y. and Harjes H.P., 2002. Probing the crust down to 9 km depth: A unique longterm fluid injection experiment at the KTB superdeep drilling hole, Germany. Bull. Seismol. Soc. Amer., 92, 2369–2380.

    Article  Google Scholar 

  • Billings S.D., Kenneth B.L.N. and Sambridge M.S., 1994. Hypocenter location: Genetic algorithm incorporating problem-specific information. Geophys. J. Int., 118, 698–706.

    Google Scholar 

  • Calderón-Marcías C., Sen M.K. and Stoffa P.L., 2000. Artificial neural networks for parameter estimation in geophysics. Geophys. Prospect., 48, 21–47.

    Article  Google Scholar 

  • Fanni A. and Montisci A., 2003. A Neural inverse problem approach for optimal design. Transactions on Magnetics, 39, 1305–1308.

    Article  Google Scholar 

  • Fogel D.B., 1995. Evolutionary Computation. IEEE Press, New York, ISBN 0-7803-1038-1.

    Google Scholar 

  • Hoffmeister F. and Bäck T., 1992. Genetic Algorithms and Evolution Strategies: Similarities and Differences. Technical Report No. SYS-1/92, University of Dortmund, Dortmund, Germany, ISSN 0941-4568.

    Google Scholar 

  • Holland J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Michigan, USA.

    Google Scholar 

  • Kolář P., 2000. Comparing tests of several non-linear methods on three simple synthetic problems. Acta Montana 15, 84–93.

    Google Scholar 

  • Kolář P., 2007. How much can we trust some moment tensors or an attempt of seismic moment error estimation. Acta Geodyn. Geomater., 4, No.2(146) 13–20.

    Google Scholar 

  • Kolínský P. and Brokešová J., 2007. The Western Bohemia uppermost crust shear wave velocities from Love wave dispersion. J. Seismol., 11, 101–120.

    Article  Google Scholar 

  • Málek J., 1998. Tomographic location of rockbursts using isometric algorithm. Publ. Inst. Geoph. Pol. Acad. Sc., M-22, 167–170.

    Google Scholar 

  • Málek J., 2005. 3D anisotropic model of seismic velocities in the upper crust. In: P. Alberigo, G. Erbacci and F. Garofano (Eds.), Science and Supercomputing in Europe. CINECA, Bologna, Italy, ISBN 88-86037-15-5, 244–247.

    Google Scholar 

  • Málek J., Horálek J. and Janský J., 2005. One-dimensional qP-wave velocity model of the Upper Crust for the West Bohemia/Vogtland Earthquake swarm region. Stud. Geophys. Geod., 49, 501–524.

    Article  Google Scholar 

  • Menke M., 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press Ltd., London, U.K.

    Google Scholar 

  • Nakayama H., Arakawa M. and Sasaki R., 2001. Optimization with implicitly known objective functions using RBF Networks and Genetic Algorithms. In: V. Kůrková, N.C. Steele, R. Neruda and M. Kárný (Eds.), Artificial Neural Nets and Genetic Algorithms. Proceedings of the International Conference in Prague, Czech Republic, 2001. Springer, Wien, New York, 387–390.

    Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery, B.P., 1992. Numerical Recipes in C. The Art of Scientific Computing. Second Edition. Cambridge University Press. Cambridge, U.K.

    Google Scholar 

  • Price K. and Storn R., 1997. Differential evolution. Dr. Dobb’s Journal, 22(4), 18–24.

    Google Scholar 

  • Price K., Storn R.M. and Lampinen J.A., 2005. Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin, Germany, ISBN-10 3-540-20950-6.

    Google Scholar 

  • Sambridge M.S. and Drijkoningen G., 1992. Genetic algorithm in seismic waveform inversion. Geophys. J. Int., 109, 323–342.

    Article  Google Scholar 

  • Storn R. and Price K., 1997. Differential Evolution. A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 11, 341–359.

    Article  Google Scholar 

  • Tarantola A., 1987. Inverse Problem Theory. Elsevier Science B.V, Amsterdam, The Netherlands.

    Google Scholar 

  • Vavryčuk V., Bohnhoff M., Jechumtálová Z., Kolář P. and Šílený J., 2007. Non-double couple mechanisms of induced microearthquakes during the 2000 injection experiment at the KTB site, Germany: a result of tensile faulting or anisotropy of a rock? Tectonophysics., in print.

  • Zhang Y. and Paulson K.V., 1997. Magnetoteluric inversion using regularized Hopfield neural networks. Geophys. Prospect., 45, 725–743.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

malek@irsm.cas.cz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Málek, J., Růžek, B. & Kolář, P. Isometric method: Efficient tool for solving non-linear inverse problems. Stud Geophys Geod 51, 469–490 (2007). https://doi.org/10.1007/s11200-007-0028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-007-0028-1

Key words

Navigation