Skip to main content
Log in

On Effective Approximation of the Power Spectrum of Large-Scale Structure of the Universe

  • Published:
Russian Physics Journal Aims and scope

The article is focused on statistical properties of spatial distribution of galaxies in the Universe on scales exceeding 5 Мpc. The investigation aims at finding an appropriate algorithm for modeling random realizations of ensembles. The objects of research are the statistical properties of the spatial distribution of galaxies on scales exceeding 5 Mpc. The aim of the study is to find a suitable algorithm for modeling random realizations of the statistical ensemble of such distributions, which makes it possible to move to remote regions of large scales with depleted statistics, and on the constructed model to test signs of the transition from correlated to uncorrelated (if any) regions of the Universe. Information about such a boundary, called in the work the horizon of independence, is a necessary component of the modern model of the world in the era of extraatmospheric astronomy. The need to determine it is dictated not only by the natural desire to look beyond the horizon, but also by the reliance on mutually distant parts of the Universe within the framework of this model practiced in observational astronomy, as independent realizations of one statistical ensemble, ensuring the representativeness of the sample. The research method is based on the use of the Uchaikin–Zolotarev power spectrum approximation and the Markov chain constructed on its basis. A comparison with observational data demonstrates a high flexibility of the approximation and its potential effectiveness in solving the problem of the independence horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. E. Peebles, The Large Scale Structure of the Universe, Princeton University press, New Jersey (1980).

    MATH  Google Scholar 

  2. V. J. Martinez and B. J. Jones, Mon. Not. R. Astr. Soc., 242, 517–521 (1990).

    Article  ADS  Google Scholar 

  3. P. J. E. Peebles and E. J. Groth, Astron. Astrophys., 53, 131–140 (1976).

    ADS  Google Scholar 

  4. F. S. Labini, M. Montuori, and L. Pietronero, Phys. Rep., 293, 61–226 (1998).

    Article  ADS  Google Scholar 

  5. Yu. V. Baryshev and P. Teerikorpi, Bull. Spec. Astrophys. Obs., 59, 9–160 (2006).

    Google Scholar 

  6. J. N. Fry, Phys. Rev. Lett., 73, No. 2, 215–219 (1994).

    Article  ADS  Google Scholar 

  7. S. A. Bonometto and F. Lucchin, Astron. Astrophys., 67, 7–9 (1978).

    Google Scholar 

  8. R. M. Soneira and P. J. E. Peebles, Astron. J., 83, No. 7, 845–860 (1978).

    Article  ADS  Google Scholar 

  9. R. K. Sheth and W. C. Saslaw, Astrophys. J., 437, 35–55 (1994).

    Article  ADS  Google Scholar 

  10. B. B. Мandelbrot, Astron. Lett. Commun., 36, 1–5 (1997).

    ADS  Google Scholar 

  11. S. Weinberg, Gravitation and Cosmology, John Wiley & Sons, New-York; London; Sidney; Toronto (1972).

    Google Scholar 

  12. V. V. Uchaikin and V. M. Zolotarev, Chance and Stability, VSP, Utrecht (1999).

    Book  Google Scholar 

  13. V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 2, Springer Verlag; Higher Education Press Beijing, Berlin (2013).

    Book  Google Scholar 

  14. V. V. Uchaikin and G. G. Gusarov, J. Math. Phys., 38, 2453–2464 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. V. Uchaikin, Grav. Cosmol., 10, 5–24 (2004).

    ADS  Google Scholar 

  16. R. M. Soneira and P. J. E. Peebles, Astron. J., 83, No. 7, 845–860 (1978).

    Article  ADS  Google Scholar 

  17. V. V. Uchaikin, Gen. Relativ. Gravit., 36, No. 7, 1689–1718 (2004).

    Article  ADS  Google Scholar 

  18. G. Stell, in: Proc. AMS, Lectures in Applied Mathematics, Vol. 27 (1991), pp. 109–137.

  19. A. B. Davis and A. Marshak, J. Quant. Spectrosc. Rad. Transfer, 84, 3–34 (2004).

    Article  ADS  Google Scholar 

  20. C. Park, M. S. Vogelev, M. G. Geller, et al., Astrophys. J., 431, 569–585 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Uchaikin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 38–48, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchaikin, V.V., Litvinov, V.A. & Kozhemiakina, E.V. On Effective Approximation of the Power Spectrum of Large-Scale Structure of the Universe. Russ Phys J 65, 42–54 (2022). https://doi.org/10.1007/s11182-022-02605-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02605-5

Keywords

Navigation