Skip to main content
Log in

Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT

  • Published:
Russian Physics Journal Aims and scope

Mechanical and thermogravimetric properties of polymer composite materials with various concentrations of multiwalled carbon nanotubes effectively shielding radiation in the radio frequency (20 Hz – 1 MHz) and microwave (26–36 GHz) frequency ranges are studied. As a matrix, widely available polymeric materials, such as polyvinyl acetate and styrene-acrylate, were used in the form of dispersions. From the analysis of the obtained experimental data, it was shown that the introduction of carbon nanotubes into the polymer matrix makes it possible to increase mechanical properties and thermal stability of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Gavrilov, A. V. Okotrub, L. G. Bulusheva, et al., Pisma Zh. Tekh. Fiz., 35, No. 2, 68–72 (2009).

    Google Scholar 

  2. N. Yousefi, X. Sun, X. Lin, et al., Adv. Mater., 26, 5480–5487 (2014).

    Article  Google Scholar 

  3. P. Verma, P. Saini, and V. Choudhary, Mater. Design., 88, 269–277 (2015).

    Article  Google Scholar 

  4. M. Dragoman, K. Grenier, D. Dubuc, et al., Appl. Phys. Lett., 88, 153108 (2006).

    Article  ADS  Google Scholar 

  5. J. Macutkevic, J. Banys, V. Kuznetsov, et al., Phys. Status Sol. A, 210, 2683– 2688 (2013).

    Article  Google Scholar 

  6. A. Paddubskaya, D. Bychanok, A. Plyushch, et al., J. Nanoelectron. Optoelectron., 7, No. 1, 81–86 (2012).

    Article  Google Scholar 

  7. P. Kuzhir, A. Paddubskaya, A. Plyushch, et al., J. Appl. Phys., 114, 164304-1– 164304-7 (2013).

    Article  ADS  Google Scholar 

  8. E. Ivanov, R. Kotsilkova, E. Krusteva, et al., J. Polymer Sci.: Part B: Polymer Phys., 49, 431–442 (2011).

    Article  ADS  Google Scholar 

  9. I. Kranauskaite, J. Macutkevic, P. Kuzhir, et al., Phys. Status Solidi A, 211, No. 7, 1623–1633 (2014).

    Article  Google Scholar 

  10. R. D. Maksimov, J. Bitenieks, E. Plume, et al., Mech. Comp. Mater., 46, (2010) 345.

    Article  Google Scholar 

  11. R. Merijs-Meri, J. Zicans, T. Ivanova, et al., Polymer Composit., 36, No. 11, 1048–1054 (2015).

    Article  Google Scholar 

  12. A. O. Plyushch, O. G. Paddubskaya, P. P. Kuzhir, et al., Russ. Phys. J., 59, No. 2, 99–104 (2016).

    Article  Google Scholar 

  13. E. T. Thostenson, Z. Ren, and T. W. Chou, Composit. Sci. Technol., 61, Nо. 13, 1899–1912. (2001)

  14. J. Li, P. S. Wong, and J. K. Kim, Mater. Sci. Eng. A, 660, No. 3, 483–484 (2008).

    Article  Google Scholar 

  15. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194–5205 (2006).

    Article  ADS  Google Scholar 

  16. P. C. Ma, J. K. Kim, and B. Z. Tang, Composit. Sci. Technol., 67, 2965–2972 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Volynets.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 141–146, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volynets, N.I., Poddubskaya, O.G., Demidenko, M.I. et al. Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT. Russ Phys J 60, 717–722 (2017). https://doi.org/10.1007/s11182-017-1129-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1129-0

Keywords

Navigation