Skip to main content
Log in

Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Release of heavy metals into water as a result of industrial activity may pose a serious threat to the environment. In this study, the potential of multi-walled carbon nano tubes (MWCNT) to remove Ni2+ cations from aqueous solutions was investigated in a batch reactor under different experimental conditions. The effects on the removal process of conditions such as initial concentration of Ni2+ ions, temperature, and adsorbent mass were investigated. Nickel uptake was quantitatively evaluated by use of the Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherm models. For 20 mg/L initial Ni2+ cation concentration, adsorption capacity increased from 8.12 to 11.75 mg/g when the temperature was increased from 25 to 65 °C, an indication of the endothermic nature of adsorption process. In addition, the adsorption equilibrium was well described by the Langmuir isotherm model; maximum adsorption capacity was 17.86 mg/g Ni2+ cations on HNO3-treated MWCNT (t-MWCNT). The results obtained in this study show that adsorption of Ni2+ on t-MWCNT is a spontaneous and endothermic process. By use of second-order kinetic constants and the Arrhenius equation, the activation energy of adsorption (E a) was determined as 5.56 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Mobasherpour, E. Salahi, M. Pazouki, Desalination 266, 142 (2011)

    Article  CAS  Google Scholar 

  2. O.J. Esalah, M.E. Weber, J.H. Vera, Can. J. Chem. Eng. 78, 948 (2000)

    Article  CAS  Google Scholar 

  3. A.I. Zouboulis, K.A. Matis, B.G. Lanara, C. Loos-Neskovic, Sep. Sci. Technol. 32, 1755 (1997)

    Article  CAS  Google Scholar 

  4. C.A. Toles, W.E. Marshall, Sep. Sci. Technol. 37, 2369 (2002)

    Article  CAS  Google Scholar 

  5. V. Ravindran, M.R. Stevens, B.N. Badriyha, M. Pirbazari, AIChE J. 45, 1135 (1999)

    Article  CAS  Google Scholar 

  6. L. Canet, M. Ilpide, P. Seta, Sep. Sci. Technol. 37, 1851 (2002)

    Article  CAS  Google Scholar 

  7. P. Miretzky, A. Saralegui, A.F. Cirelli, Chemosphere 62, 247 (2006)

    Article  CAS  Google Scholar 

  8. J.W.W. Eckenfelder, Industrial Water Pollution Control, 2nd edn. (McGraw-Hill International Editions, Singapore, 1989)

    Google Scholar 

  9. P. Parker, Encyclopedia of Environmental Sciences, 2nd edn. (McGraw Hill, New York, 1980)

    Google Scholar 

  10. H. Hasar, J. Hazard. Mater. 97, 49 (2003)

    Article  CAS  Google Scholar 

  11. O. Yavuz, Y. Altunkaynak, F. Gu¨zel, Water Res. 37, 948 (2003)

    Article  CAS  Google Scholar 

  12. Z. Reddad, C. Gerente, Y. Andresp, P.L. Ecloirec, Environ. Sci. Technol. 36, 2067 (2002)

    Article  CAS  Google Scholar 

  13. K. Kadirvelu, C.F. Brasquet, P.L. Cloirec, Langmuir 16, 8404 (2000)

    Article  CAS  Google Scholar 

  14. P. Brown, I.A. Jefcoat, D. Parrish, S. Gill, S. Graham, Adv. Environ. Res. 4, 9 (2000)

    Article  Google Scholar 

  15. K.C. Justi, V.T. Fávere, M.C.M. Laranjeira, A. Neves, R.A. Peralta, J. Colloid Interface Sci. 291, 369 (2005)

    Article  CAS  Google Scholar 

  16. A.H. Hawari, C.N. Mulligan, Bioresour. Technol. 97, 692 (2006)

    Article  CAS  Google Scholar 

  17. H.K. An, B.Y. Park, D.S. Kim, Water Res. 35, 3356 (2001)

    Google Scholar 

  18. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  19. R.C. Haddon, Acc. Chem. Res. 35, 977 (2002)

    Article  Google Scholar 

  20. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, A. Lefrant, Nature 388, 756 (1997)

    Article  CAS  Google Scholar 

  21. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J.R. Macias, Appl. Phys. 67, 29 (1998)

    CAS  Google Scholar 

  22. P. Nikolaev, M. Bronikowski, R. Bradley, F. Rohmund, D.T. Colbert, K. Smith, Chem. Phys. Lett. 313, 913 (1999)

    Article  Google Scholar 

  23. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Chem. Phys. Chem. 2, 78 (2001)

    Article  CAS  Google Scholar 

  24. R.Q. Long, R.T. Yang, J. Am. Chem. Soc. 123, 2058 (2001)

    Article  CAS  Google Scholar 

  25. S. Agnihotri, M.J. Rood, M. Rostam-Abadi, Carbon 43, 2379 (2005)

    Article  CAS  Google Scholar 

  26. P.A. Gauden, A.P. Terzyk, G. Rychlicki, P. Kowalczyk, K. Lota, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Chem. Phys. Lett. 421, 409 (2006)

    Article  CAS  Google Scholar 

  27. Y.H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan, D. Wu, Mater. Res. Bull. 38, 469 (2003)

    Article  CAS  Google Scholar 

  28. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia, Chem. Phys. Lett. 376, 154 (2003)

    Article  CAS  Google Scholar 

  29. C. Lu, Y.L. Chung, K.F. Chang, Water Res. 39, 1183 (2005)

    Article  CAS  Google Scholar 

  30. K. Yang, L. Zhu, B. Xing, Environ. Sci. Technol. 40, 1861 (2006)

    Google Scholar 

  31. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Chem. Phys. Lett. 357, 263 (2002)

    Article  CAS  Google Scholar 

  32. Z.C. Di, J. Ding, X.J. Peng, Y.H. Li, Z.K. Luan, J. Liang, Chemosphere 62, 861 (2006)

    Article  CAS  Google Scholar 

  33. C. Lu, H. Chiu, C. Liu, Ind. Eng. Chem. Res. 45, 2850 (2006)

    Article  CAS  Google Scholar 

  34. A. Stafiej, K. Pyrzynska, Sep. Purif. Technol. 58, 49 (2007)

    Article  CAS  Google Scholar 

  35. Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, Carbon 41, 2787 (2003)

    Article  CAS  Google Scholar 

  36. Z. Aksu, S. Tezer, Process Biochem. 40, 1347 (2005)

    Article  CAS  Google Scholar 

  37. Z. Aksu, Process Biochem. 38, 89 (2002)

    Article  CAS  Google Scholar 

  38. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  39. E. Malkoc, Y. Nuho˘glu, Fres. Environ. Bull. 12, 376 (2003)

    CAS  Google Scholar 

  40. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Sep. Purif. Technol. 24, 497 (2001)

    Article  CAS  Google Scholar 

  41. S.M. Hasany, M.M. Saeed, M. Ahmed, J. Radioanal, Nucl. Chem. 252, 477 (2002)

    Article  CAS  Google Scholar 

  42. S.A. Khan, U.R. Rehman, M.A. Khan, Waste Manag. 15, 271 (1995)

    Article  CAS  Google Scholar 

  43. S.H. Lin, R.S. Juang, J. Hazard. Mater. B 92, 315 (2002)

    Article  Google Scholar 

  44. C.C. Wang, L.C. Juang, C.K. Lee, T.C. Hsua, J.F. Leeb, H.P. Chaob, J. Colloid Interface Sci. 280, 27 (2004)

    Article  CAS  Google Scholar 

  45. B.S. Krishna, D.S.R. Murty, B.S.J. Prakash, J. Colloid Interface Sci. 229, 230 (2000)

    Article  CAS  Google Scholar 

  46. P.N. Pathak, G.R. Choppin, J. Radioanal. Nucl. Chem. 270, 299 (2006)

    Article  CAS  Google Scholar 

  47. X.L. Tan, X.K. Wang, M. Fang, C.L. Chen, Colloids Surf. A 296, 109 (2007)

    Article  CAS  Google Scholar 

  48. S.K. Ouki, M. Kavannagh, Water Sci. Technol. 39, 115 (1999)

    CAS  Google Scholar 

  49. X.S. Wang, Y. Qin, J. Hazard. Mater. B138, 582 (2006)

    Article  Google Scholar 

  50. F.P. Padilha, F. Pessˆoa de Franc, A.C. Augusto da Costa, Bioresour. Technol. 96, 1511 (2005)

    Article  CAS  Google Scholar 

  51. M. Rao, A.V. Parwate, A.G. Bhole, Waste Manag. 22, 821 (2002)

    Article  CAS  Google Scholar 

  52. V. Patmavathy, P. Vasudevan, S.C. Dhingra, Process Biochem. 38, 1389 (2003)

    Article  Google Scholar 

  53. F. Abu Al-Rub, M. Kandah, N. Aldabaibeh, Eng. Life Sci. 2, 111 (2002)

    Article  Google Scholar 

  54. Y.S. Ho, D.A. JohnWase, C.F. Forster, Water Res. 29, 1327 (1995)

    Article  CAS  Google Scholar 

  55. J.L. Gardea-Torresdey, K.J. Tiemann, K.I. Dokken, G. Gamez, in Proceedings of the 1998 Conference on Hazardous Waste Research, pp. 111 (1998)

  56. C. Huang, C. Ying-Chien, L. Ming-Ren, J. Hazard. Mater. 45, 265 (1996)

    Article  CAS  Google Scholar 

  57. E. Malkoc, J. Hazard. Mater. B137, 899 (2006)

    Article  Google Scholar 

  58. M. Do˘gan, M. Alkan, Chemosphere 50, 517 (2003)

    Article  Google Scholar 

  59. Y.S. Ho, Water Res. 37, 2323 (2003)

    Article  CAS  Google Scholar 

  60. J.P. Chen, L. Wang, Chemosphere 54, 397 (2004)

    Article  CAS  Google Scholar 

  61. Y. Ho, C. Chiang, Adsorption 7, 139 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was completely supported by the Materials and Energy Research Center (MERC), Karaj, Iran, for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Mobasherpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mobasherpour, I., Salahi, E. & Ebrahimi, M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Res Chem Intermed 38, 2205–2222 (2012). https://doi.org/10.1007/s11164-012-0537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0537-6

Keywords

Navigation