Skip to main content
Log in

Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Environmental management is crucial for sustainable growth and development. The use of microorganisms to clean up contaminated environment provides cheap alternative method to the conventional treatment methods. But the choice of easily grown, viable and effective natural occurring microorganism to do the cleaning is a major challenge. In this article we presented and reviewed the application of photosynthetic bacteria in bioremediation due to their utilisation of various kinds of pollutants, minimum nutrients requirement and the possibility of generating valuable products concomitantly cleaning the contaminated environment. Pollutants such as pesticides, heavy metals, dyes, crude oil and odour with the specific photosynthetic bacteria capable of degrading the pollutants were identified and discussed in this article. The possible value added products to be generated as well as the mechanism of degradation are also highlighted and discussed in the article. The utilisation of carbon dioxide and the generation of value added products while cleaning up polluted environment are the major advantages of using these bacteria in bioremediation and have both environmental and economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abed R, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad 55(1):29–37. doi:10.1016/j.ibiod.2004.07.001

    CAS  Google Scholar 

  • Ahuja P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85. doi:10.1016/S0032-9592(98)00072-7

    CAS  Google Scholar 

  • Akpor O, Muchie M (2010) Bioremediation of polluted wastewater influent: phosphorus and nitrogen removal. Sci Res Essays 5:3222–3230

    Google Scholar 

  • Al Hasan R, Sorkhoh N, Al Bader D, Radwan S (1994) Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Appl Microbiol Biotechnol 41(5):615–619. doi:10.1007/BF00178499

    CAS  Google Scholar 

  • Ali DM, Suresh A, Kumar RP, Gunasekaran M, Thajuddin N (2011) Efficiency of textile dye decolorization by marine cyanobacterium, Oscillatoria formosa NTDM02. Afr J Basic Appl Sci 3(1):09–13

    Google Scholar 

  • Azad S, Vikineswary S, Ramachandran K, Chong V (2001) Growth and production of biomass of Rhodovulum sulfidophilum in sardine processing wastewater. Lett Appl Microbiol 33:264–268. doi:10.1046/j.1472-765X.2001.00993.x

    CAS  Google Scholar 

  • Azad S, Vikineswary S, Chong V, Ramachandran K (2004) Rhodovulum sulfidophilum in the treatment and utilization of sardine processing wastewater. Lett Appl Microbiol 38:13–18

    CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    CAS  Google Scholar 

  • Bartram J, Chorus I (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Taylor & Francis, London

    Google Scholar 

  • Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886. doi:10.3390/en6115869

    Google Scholar 

  • Berne C, Allainmat B, Garcia D (2005) Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria. Biotechnol Lett 27:561–566. doi:10.1007/s10529-005-2882-7

    CAS  Google Scholar 

  • Boyles W (1997) The science of chemical oxygen demand. Hach Lange, Colorado

    Google Scholar 

  • Burgess JG, Kawaguchi R, Yamada A, Matsunaga T (1994) Rhodobacter marinus sp. nov.: a new marine hydrogen producing photosynthetic bacterium which is sensitive to oxygen and sulphide. Microbiology 140:965–970

    CAS  Google Scholar 

  • Byler J, Schulte DD, Koelsch RK (2004) Odor, H2S and NH3 emissions from phototrophic and non-phototrophic anaerobic swine lagoons. In: Conference presentations and white papers. Biological Systems Engineering, p 18

  • Cáceres T, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646. doi:10.1007/s00284-008-9293-7

    Google Scholar 

  • Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249. doi:10.1016/S0168-1656(01)00280-2

    CAS  Google Scholar 

  • Çelik L, Öztürk A, Abdullah MI (2012) Biodegradation of reactive red 195 azo dye by the bacterium Rhodopseudomonas palustris 51ATA. Afr J Microbiol Res 6(1):120–126. doi:10.5897/AJMR11.1059

    Google Scholar 

  • Chen T, Schulte DD, Koelsch RK, Parkhurst AM (2003) Characteristics of phototrophic and non-phototrophic lagoons for swine manure. Biological Systems Engineering, Papers and Publications, p 11

  • Chevalier P, Proulx D, Lessard P, Vincent W, De la Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12(2):105–112. doi:10.1023/A:1008168128654

    CAS  Google Scholar 

  • Choorit W, Thanakoset P, Thongpradistha J, Sasaki K, Noparatnaraporn N (2002) Identification and cultivation of photosynthetic bacteria in wastewater from a concentrated latex processing factory. Biotechnol Lett 24(13):1055–1058. doi:10.1023/A:1016026412361

    CAS  Google Scholar 

  • da Costa ACA, de Franca FP (2003) Cadmium interaction with microalgal cells, cyanobacterial cells, and seaweeds; toxicology and biotechnological potential for wastewater treatment. Mar Biotechnol 5(2):149–156. doi:10.1007/s10126-002-0109-7

    Google Scholar 

  • de Lima LKF, Ponsano EHG, Pinto MF (2011) Cultivation of Rubrivivax gelatinosus in fish industry effluent for depollution and biomass production. World J Microbiol Biotechnol 27:2553–2558

    Google Scholar 

  • De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18(2):181–187. doi:10.1007/s10532-006-9053-y

    CAS  Google Scholar 

  • Deng X, Jia P (2011) Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresour Technol 102:3083–3088

    CAS  Google Scholar 

  • Do YS, Schmidt TM, Zahn JA, Boyd ES, de la Mora A, DiSpirito AA (2003) Role of Rhodobacter sp. strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation. Appl Environ Microbiol 69(3):1710–1720. doi:10.1128/AEM.69.3.1710-1720.2003

    CAS  Google Scholar 

  • El-Bestawy E (2008) Treatment of mixed domestic–industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol 35(11):1503–1516. doi:10.1007/s10295-008-0452-4

    CAS  Google Scholar 

  • ElMekawy A, Diels L, De Wever H, Pant D (2013) Valorization of cereal based biorefinery byproducts: reality and expectations. Environ Sci Technol 47:9014–9027

    CAS  Google Scholar 

  • El-Sheekh MM, El-Shouny WA, Osman ME, El-Gammal EW (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19(2):357–365. doi:10.1016/j.etap.2004.09.005

    CAS  Google Scholar 

  • Eroğlu E, Gündüz U, Yücel M, Türker L, Eroğlu I (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrog Energy 29:163–171

    Google Scholar 

  • Feng Y, Yu Y, Wang Y, Lin X (2007) Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. Curr Microbiol 55(5):402–408. doi:10.1007/s00284-007-9007-6

    CAS  Google Scholar 

  • Fiore MF, Trevors JT (1994) Cell composition and metal tolerance in cyanobacteria. Biometals 7:83–103. doi:10.1007/BF00140478

    CAS  Google Scholar 

  • Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971. doi:10.1016/j.envint.2004.02.001

    CAS  Google Scholar 

  • Garrity G (2006) Bergey’s manual® of systematic bacteriology, vol 2. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) The proteobacteria, part A introductory essays. Springer

  • Goel M, Chovelon J-M, Ferronato C, Bayard R, Sreekrishnan T (2010) The remediation of wastewater containing 4-chlorophenol using integrated photocatalytic and biological treatment. J Photochem Photobiol B: Biol 98(1):1–6. doi:10.1016/j.jphotobiol.2009.09.006

    CAS  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby M, Crawford R, Crawford D (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176(5):1339–1347

    CAS  Google Scholar 

  • Greene B, McPherson R, Darnall D (1987) Algal sorbents for selective metal ion recovery. Metals speciation, separation and recovery. Lewis, Michigan

    Google Scholar 

  • Hatzios KK (1991) Biotransformation of herbicides in higher plants. In: Cessna AJ, Grover R (eds) Environmental chemistry of herbicides. CRC Press, Boca Raton

    Google Scholar 

  • He J, Zhang G, Lu H (2010) Treatment of soybean wastewater by a wild strain Rhodobacter sphaeroides and to produce protein under natural conditions. Front Environ Sci Eng China 4:334–339. doi:10.1007/s11783-010-0239-5

    CAS  Google Scholar 

  • Hirotani H, Ohigashi H, Kobayashi M, Koshimizu K, Takahashi E (1991) Inactivation of T5 phage by cis -vaccenic acid, an antivirus substance from Rhodopseudomonas capsulata, and by unsaturated fatty acids and related alcohols. FEMS Microbiol Lett. doi:10.1111/j.1574-6968.1991.tb04314.x

    Google Scholar 

  • Holt JG (1994) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66(1):133–139. doi:10.1128/AEM.66.1.133-139.2000

    CAS  Google Scholar 

  • Huang PJ, Hou DB, Zhang GX, Li JC (2013) Estimation of chemical oxygen demand by ultraviolet spectroscopic profiling and physical parameters using IPW-PLS algorithm. Appl Mech Mater 316:606–609. doi:10.4028/www.scientific.net/AMM.316-317.606

    Google Scholar 

  • Ibrahim Z, Ahmad WA, Baba AB (2001) Bioaccumulation of silver and the isolation of metal-binding protein from P. diminuta. Braz Arch Biol Technol 44:223–225

    CAS  Google Scholar 

  • Ibrahim Z, Amin MF, Yahya A, Aris A, Muda K (2010) Characteristics of developed granules containing selected decolourising bacteria for the degradation of textile wastewater. Water Sci Technol 61:1279–1288. doi:10.2166/wst.2010.021

    CAS  Google Scholar 

  • Jacob-Lopes E, Lacerda LMCF, Franco TT (2008) Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem Eng J 40:27–34

    CAS  Google Scholar 

  • Jamil Z, Mohamad Annuar MS, Ibrahim S, Vikineswary S (2009) Optimization of phototrophic hydrogen production by Rhodopseudomonas palustris PBUM001 via statistical experimental design. Int J Hydrog Energy 34:7502–7512. doi:10.1016/j.ijhydene.2009.05.116

    CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Bio/Technol 9(3):215–288. doi:10.1007/s11157-010-9215-6

    CAS  Google Scholar 

  • Kalavathi DF, Uma L, Subramanian G (2001) Degradation and metabolization of the pigment—melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme Microb Technol 29(5):246–251. doi:10.1016/S0141-0229(01)00383-0

    Google Scholar 

  • Kamal VS, Wyndham RC (1990) Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas palustris WS17. Appl Environ Microbiol 56(12):3871–3873

  • Kantachote D, Torpee S, Umsakul K (2005) The potential use of anoxygenic phototrophic bacteria for treating latex rubber sheet wastewater. Electron J Biotechnol 8:314–323

    CAS  Google Scholar 

  • Kaushik A, Mona S, Kaushik C (2011) Integrating photobiological hydrogen production with dye–metal bioremoval from simulated textile wastewater. Bioresour Technol 102:9957–9964

    CAS  Google Scholar 

  • Kim M, Choi K-M, Yin C-R, Lee K-Y, Im W-T, Lim J, Lee S-T (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett 26(10):819–822. doi:10.1023/B:BILE.0000025884.50198.67

    CAS  Google Scholar 

  • Koblížek M, Falkowski PG, Kolber ZS (2006) Diversity and distribution of photosynthetic bacteria in the Black Sea. Deep Sea Res Part II 53(17):1934–1944

    Google Scholar 

  • Krooneman J, van den Akker S, Gomes TMP, Forney LJ, Gottschal JC (1999) Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and mixed cultures of the anoxygenic photoheterotroph Rhodopseudomonas palustris DCP3 and an aerobic Alcaligenes species. Appl Environ Microbiol 65(1):131–137

    CAS  Google Scholar 

  • Kuritz T (1998) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol 85:186S–192S. doi:10.1111/j.1365-2672.1998.tb05298.x

    Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(1):234–238

    CAS  Google Scholar 

  • Kushalatha M (2010) Photobiodegradation of halogenated aromatic pollutants. Adv Biosci Biotechnol 1:238–240. doi:10.4236/abb.2010.13033

    Google Scholar 

  • Liu G-F, Zhou J-T, Wang J, Song Z-y, Qv Y-y (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World J Microbiol Biotechnol 22(10):1069–1074. doi:10.1007/s11274-005-4857-1

    CAS  Google Scholar 

  • Lu H, Zhang G, Wan T, Lu Y (2011) Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: different metabolic pathways. Bioresour Technol 102:9503–9508

    CAS  Google Scholar 

  • Madigan MT, Jung DO (2008) An overview of purple bacteria: systematics, physiology, and habitats. In: The purple phototrophic bacteria. Adv Photosynth Respir 28:1–15. doi:10.1007/978-1-4020-8815-5_1

  • Madukasi E, Dai X, He C, Zhou J (2010) Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int J Environ Sci Technol 7:165–174

    CAS  Google Scholar 

  • Madukasi EI, Chunhua H, Zhang G (2011) Isolation and application of a wild strain photosynthetic bacterium to environmental waste management. Int J Environ Sci Technol 8(3):513–522. doi:10.1007/BF03326237

    CAS  Google Scholar 

  • Mandal S, Mallick N (2012) Biodiesel production by the green microalga Scenedesmus obliquus in a recirculatory aquaculture system. Appl Environ Microbiol 78:5929–5934

    CAS  Google Scholar 

  • McGrath JE, Harfoot CG (1997) Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas. Appl Environ Microbiol 63(8):3333–3335

    CAS  Google Scholar 

  • McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill I (2008) Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere 71(9):1617–1628. doi:10.1016/j.chemosphere.2008.01.031

    CAS  Google Scholar 

  • Molina-Guijarro JM, Pérez J, Muñoz-Dorado J, Guillén F, Moya R, Hernández M, Arias ME (2010) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12(1):13–21

    Google Scholar 

  • Mondal P, Chauhan B (2012) Biodegradation of azo dyes from wastewater. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world. Springer, Netherlands, pp 255–275

    Google Scholar 

  • Nagadomi H, Kitamura T, Watanabe M, Sasaki K (2000) Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilised photosynthetic bacteria. Biotechnol Lett 22(17):1369–1374. doi:10.1023/A:1005688229783

    CAS  Google Scholar 

  • Nagasathya A, Thajuddin N (2008) Decolourization of paper mill effluent using hypersaline cyanobacterium. Res J Environ Sci 2(5):408–414. doi:10.3923/rjes.2008.408.414

    CAS  Google Scholar 

  • Narro M, Cerniglia C, Van Baalen C, Gibson D (1992) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58(4):1360–1363

    CAS  Google Scholar 

  • Nawaz MS, Ahsan M (2014) Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alex Eng J. doi:10.1016/j.aej.2014.06.007

  • Niladevi K, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour Technol 99(11):4583–4589

    CAS  Google Scholar 

  • Noparatnaraporn N, Wongkornchawalit W, Kantachote D, Nagai S (1986) SCP production of Rhodopseudomonas sphaeroides on pineapple wastes. J Ferment Technol 64:137–143. doi:10.1016/0385-6380(86)90008-7

    CAS  Google Scholar 

  • Noparatnaraporn N, Trakulnaleumsai S, Silveira RG, Nishizawa Y, Nagai S (1987) SCP production by mixed culture of Rhodocyclus gelatinosus and Rhodobacter sphaeroides from Cassava Waste. J Ferment Technol 65:11–16. doi:10.1016/0385-6380(87)90059-8

    CAS  Google Scholar 

  • Okubo Y, Futamata H, Hiraishi A (2006) Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl Environ Microbiol 72(9):6225–6233. doi:10.1128/AEM.00796-06

    CAS  Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2009) Bioabsorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res 164:420–428. doi:10.1016/j.micres.2007.02.009

    CAS  Google Scholar 

  • Pant D, Adholeya A (2009) Concentration of fungal ligninolytic enzymes by ultrafiltration and their use in distillery effluent decolorization. World J Microbiol Biotechnol 25:1793–1800. doi:10.1007/s11274-009-0079-2

    CAS  Google Scholar 

  • Pant D, Adholeya A (2010) Development of a novel fungal consortium for the treatment of molasses distillery wastewater. Environmentalist 30:178–182. doi:10.1007/s10669-010-9255-z

    Google Scholar 

  • Panwichian S, Kantachote D, Wittayaweerasak B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol 14(4):1–13. doi:10.2225/vol14-issue4-fulltext-2

    Google Scholar 

  • Pattanamanee W, Choorit W, Deesan C, Sirisansaneeyakul S, Chisti Y (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrog Energy 37:4077–4087

    CAS  Google Scholar 

  • Penn MR, Pauer JJ, Mihelcic JR (2006) Biochemical oxygen demand. In: Sabljic A (ed) Environmental and ecological chemistry. Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford

  • Ponsano EHG, Lacava PM, Pinto MF (2003) Chemical composition of Rhodocyclus gelatinosus biomass produced in poultry slaughterhouse wastewater. Braz Arch Biol Technol 46(2):143–147. doi:10.1590/S1516-89132003000200001

    CAS  Google Scholar 

  • Ponsano EH, Paulino CZ, Pinto MF (2008) Phototrophic growth of Rubrivivax gelatinosus in poultry slaughterhouse wastewater. Bioresour Technol 99:3836–3842

    CAS  Google Scholar 

  • Prasanna R, Jaiswal P, Kaushik B (2008) Cyanobacteria as potential options for environmental sustainability—promises and challenges. Indian J Microbiol 48(1):89–94. doi:10.1007/s12088-008-0009-2

    CAS  Google Scholar 

  • Prasertsan P, Jaturapornpipat M, Siripatana C (1997) Utilization and treatment of tuna condensate by photosynthetic bacteria. Pure Appl Chem 69(11):2439–2446. doi:10.1351/pac199769112439

  • Radwan S, Al-Hasan R (2002) Oil pollution and cyanobacteria. In: Whitton B, Potts M (eds) The ecology of cyanobacteria. Springer, Netherlands, pp 307–319

    Google Scholar 

  • Radwan S, Al-Hasan R, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeterior Biodegrad 50(1):55–59. doi:10.1016/S0964-8305(02)00067-7

    CAS  Google Scholar 

  • Radway JC, Yozua BA, Benemann JR, Chini Zitelli G, Malda J, Babcock RWJR, Tredici MR (1999) Evaluation of near-horizontal tubular photobioreactor system in Hawaii. In: 8th international conference on applied algology, Montecassini, Italy

  • Raghukumar C, Vipparty V, David J, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436. doi:10.1007/s002530100784

    CAS  Google Scholar 

  • Ragini G, Bisen PS (2011) Bioremediation. In: Pimentel D (ed) Encyclopedia of biotechnology in agriculture and food. Taylor and Francis, New York

  • Rai L, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8(2):110–114. doi:10.1007/BF01195827

    CAS  Google Scholar 

  • Rawson D (1985) The effects of exogenous amino acids on growth and nitrogenase activity in the cyanobacterium Anabaena cylindrica PCC 7122. J Gen Microbiol 134:2549–2554. doi:10.1099/00221287-131-10-2549

    Google Scholar 

  • Saijai P, Duangporn K, Banjong W, Megharaj M (2010) Isolation of purple nonsulfur bacteria for the removal of heavy metals and sodium from contaminated shrimp ponds. Electron J Biotechnol 13(4). doi:10.2225/vol13-issue4-fulltext-8

  • Samantaray S, Nayak JK, Mallick N (2011) Wastewater utilization for poly-β-hydroxybutyrate production by the cyanobacterium Aulosira fertilissima in a recirculatory aquaculture system. Appl Environ Microbiol 77:8735–8743

    CAS  Google Scholar 

  • Sánchez O, Diestra E, Esteve I, Mas J (2005) Molecular characterization of an oil-degrading cyanobacterial consortium. Microb Ecol 50(4):580–588. doi:10.1007/s00248-005-5061-4

    Google Scholar 

  • Sasaki K (1999) Hydrogen and 5-aminolevulinic acid production by photosynthetic bacteria. In: Zaborsky O, Benemann J, Matsunaga T, Miyake J, San Pietro A (eds) Biohydrogen. Springer, pp 133–142. doi:10.1007/978-0-585-35132-2_17

  • Sasaki K, Tanaka T, Nishizawa Y, Hayashi M (1990) Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl Microbiol Biotechnol 32:727–731. doi:10.1007/BF00164749

    CAS  Google Scholar 

  • Sasaki K, Watanabe M, Suda Y, Ishizuka A, Noparatnaraporn N (2005) Applications of photosynthetic bacteria for medical fields. J Biosci Bioeng 100:481–488

    CAS  Google Scholar 

  • Shah V, Garg N, Madamwar D (2001) An integrated process of textile dye removal and hydrogen evolution using cyanobacterium, Phormidium valderianum. World J Microbiol Biotechnol 17(5):499–504. doi:10.1023/A:1011994215307

    CAS  Google Scholar 

  • Shimabukuro RH (1985) Detoxification of herbicides. In: Duke SO (ed) Weed physiology, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Shipman RH, Kao IC, Fan LT (1975) Single-cell protein production by photosynthetic bacteria cultivation in agricultural by-products. Biotechnol Bioeng 17:1561–1570. doi:10.1002/bit.260171102

    CAS  Google Scholar 

  • Sikdar SK, Irvine RL (1998) Bioremediation: biodegradation technology developments, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Singh SP, Verma SK, Singh RK, Pandey PK (1989) Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol Lett 60(2):193–196. doi:10.1111/j.1574-6968.1989.tb03444.x

    CAS  Google Scholar 

  • Subramaniyan V (2012a) Potential applications of cyanobacteria in industrial effluents—a review. J Bioremed Biodegrad 3(6):154–158. doi:10.4172/2155-6199.1000154

    CAS  Google Scholar 

  • Subramaniyan V (2012b) Treatment of dye industry effluent using free and immobilized cyanobacteria. J Bioremed Biodegrad 3(10):165–170. doi:10.4172/2155-6199.1000165

    Google Scholar 

  • Takeno K, Sasaki K, Watanabe M, Kaneyasu T, Nishio N (1999) Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106. J Biosci Bioeng 88(4):410–415. doi:10.1016/S1389-1723(99)80218-7

    CAS  Google Scholar 

  • Telke AA, Kalyani DC, Dawkar VV, Govindwar SP (2009) Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye CI Reactive Orange 16. J Hazard Mater 172(1):298–309. doi:10.1016/j.jhazmat.2009.07.008

    CAS  Google Scholar 

  • Tran THK, Le TTA, Tran LT, Ooi T, Kinoshita S (2012) Decolorization of azo dyes by purple non-sulfur bacteria. Annual report of FY 2002, The Core University Program between Japan Society for the Promotion of Science (JSPS) and National Centre for Natural Science and Technology (NCST), pp 112–118

  • van der Woude BJ, de Boer M, van der Put NMJ, van der Geld FM, Prins RA, Gottschal JC (1994) Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria. FEMS Microbiol Lett 119(1–2):199–207. doi:10.1111/j.1574-6968.1994.tb06889.x

    Google Scholar 

  • Vincenzini M, Materassi R, Tredici MR, Florenzano G (1982) Hydrogen production by immobilized cells—II. H2-photoevolution and waste-water treatment by agar-entrapped cells of Rhodopseudomonas palustris and Rhodospirillum molischianum. Int J Hydrog Energy 7:725–728. doi:10.1016/0360-3199(82)90021-0

    CAS  Google Scholar 

  • Vrati S (1984) Single cell protein production by photosynthetic bacteria grown on the clarified effluents of biogas plant. Appl Microbiol Biotechnol 19:199–202. doi:10.1007/BF00256454

    CAS  Google Scholar 

  • Watanabe M, Kawahara K, Sasaki K, Noparatnaraporn N (2003) Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. J Biosci Bioeng 95:374–378

    CAS  Google Scholar 

  • Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267

    CAS  Google Scholar 

  • Yetis M, Gündüz U, Eroglu I, Yücel M, Türker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 25:1035–1041

    CAS  Google Scholar 

  • Yiğit DÖ, Gündüz U, Türker L, Yücel M, Eroğlu N (1999) Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U. 001 grown in the waste water of a sugar refinery. In: Osinga R, Tramper J, Burgess JG, Wijffels RH (eds) Prog Ind Microbiol 35:125–131. doi:10.1016/S0079-6352(99)80106-4

  • Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrog Energy 24:305–310. doi:10.1016/S0360-3199(98)00081-0

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education Malaysia (MOE) and Universiti Teknologi Malaysia (UTM) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaharah Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idi, A., Md Nor, M.H., Abdul Wahab, M.F. et al. Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14, 271–285 (2015). https://doi.org/10.1007/s11157-014-9355-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9355-1

Keywords

Navigation