Skip to main content
Log in

Toxicity and bioremediation of pesticides in agricultural soil

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Pesticides are one of the persistent organic pollutants which are of concern due to their occurrence in various ecosystems. In nature, the pesticide residues are subjected to physical, chemical and biochemical degradation process, but because of its high stability and water solubility, the pesticide residues persist in the environment. Moreover, the prevailing environmental conditions like the soil characteristics also contribute for their persistence. Bioremediation is one of the options for the removal of pesticides from environment. One important uncertainty associated with the implementation of bioremediation is the low bioavailability of some of the pesticides in the heterogeneous subsurface environment. Bioavailability of a compound depends on numerous factors within the cells of microorganism like the transportation of susbstrate across cell membrane, enzymatic reactions, biosurfactant production etc. as well as environment conditions such as pH, temperature, availability of electron acceptor etc. Pesticides like dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), Endosulfan, benzene hexa chloride (BHC), Atrazine etc. are such ubiquitous compounds which persist in soil and sediments due to less bioavailability. The half life of such less bioavailable pesticides ranges from 100 to 200 days. Most of these residues get adsorbed to soil particles and thereby becomes unavailable to microbes. In this review, an attempt has been made to present a brief idea on ‘major limitations in pesticide biodegradation in soil’ highlighting a few studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilash PC, Nandita S (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165(1–3):1–12

    CAS  Google Scholar 

  • Agnihotri NP (1999) Pesticide safety and monitoring, all India coordinated research project on pesticides residues. Indian council of agricultural research. New Delhi, India

    Google Scholar 

  • Aislabie JAD, Davison HL, Boul PD, Franzmann DR, Jardine Karuso P (1999) Isolation of Terrabacter sp. Strain DDE-1, which metabolizes 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene when induced with biphenyl. Appl Environ Microbiol 65:5607–5611

    CAS  Google Scholar 

  • Al-Araji Y, Issa L (2004) Biosurfactant production by Pseudomonas aeruginosa 181. PhD thesis, Universiti Putra Malaysia

  • Albarran A, Celis R, Hermosin M, Lopez-Pineiro A, Cornejo J (2004) Behavior of simazine in soil amended with the final residue of the olive-oil extraction process. Chemos 54:717–724

    CAS  Google Scholar 

  • Alexander R (2003) Landscape architect specifications for compost utilization. CWC/PNWER. The US Composting Council, Washington, 91

  • Alice O (1969) Effect of DDT on reproduction in the rat. Toxicol Appl Pharmacol 14:74–81

    Google Scholar 

  • Alvey S, Crowley DE (1995) Influence of organic amendments on biodegradation of atrazine as a nitrogen source. J Environ Qual 24:1156–1162

    CAS  Google Scholar 

  • Amer A, Aly E (2011) Biodegradation of diazinon by serratia marcescens DI101 and its use in bioremediation of contaminated soil. Environ J Microbiol Biotechnol 21(1):71–80

    Google Scholar 

  • Arshad M, Hussain S, Saleem M (2007) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104(2):364–370

    Google Scholar 

  • Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:1364–5072

    Google Scholar 

  • Asker G, Vibeke FL, Kim D (2004) A DNAPL hotspot of Organophosphorus pesticides. Høfde 42 Harboøre Tange, County, Denmark

  • ASTDR (2000) Toxicological profile for endosulfan US Department of health and human services; Aegncy for toxic substances and disease registry, Atlanta, Ga, USA

  • Atwal AS (1986) Agricultural pest of India and South East Asia. Kalyani Publishers, New Delhi, p 52

    Google Scholar 

  • Awasthi N, Kumar A, Makkar R, Cameotra SS (1999) Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J Environ Sci Health B 34:793–803

    Google Scholar 

  • Bailey GW, White JL (1970) Factors influencing the adsorption, desorption, and movement of pesticides in soils. Residue Rev 32:29–92

    CAS  Google Scholar 

  • Balesdenta J, Chenub C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230

    Google Scholar 

  • Barles RW, Daughton CG, Hsieh DPH (1979) Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Arch Environ Contam Toxicol 8:647–660

    CAS  Google Scholar 

  • Beena Kumari VK, Madan Kathpal TS (2008) Status of contamination of soil and water in Haryana, India. Environ Monit Asses 136:239–244

    Google Scholar 

  • Bello XV, Devesa-Rey R, Cruz JM, Moldes AB (2012) Study of the synergistic effects of salinity, pH, and temperature on the surface-active properties of biosurfactants produced by lactobacillus pentosus. J Agric Food Chem 60:1258–1265

    Google Scholar 

  • Bending G, Friloux DM, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    CAS  Google Scholar 

  • Berg G, Seech AF, Lee H, Trevors JT (1990) Identification and characterization of soil bacterium with emulsifying activity. J Environ Sci Health 7:753–764

    Google Scholar 

  • Betancourt AM, Carr RL (2004) The effect of chlorpyrifos and chlorpyrifos-oxon on brain cholinesterase, muscarinic receptor binding, and neurotrophin levels in rats following early postnatal exposure. Toxicol Sci 77:63–71

    CAS  Google Scholar 

  • Betoulle S, Duchiron C, Deschaux P (2000) Lindane differently modulates intracellular calcium levels in two populations of rainbow trout (Oncorhynchus mykiss) immune cells: head kidney phagocytes and peripheral blood leucocytes. Toxicology 145 (2–3), 14, 203–215

    Google Scholar 

  • Bhatnagar VK (2001) Pesticides pollution: trends and perspectives. ICMR Bull 31:87–88

    Google Scholar 

  • Bhatt P, Suresh Kumar M, Chakrabarti Tapan (2007) Assessment of bioremediation possibilities of technical grade hexachlorocyclohexane (tech-HCH) contaminated soils. J Hazard Mat 143:349–353

    CAS  Google Scholar 

  • Bhattacharyaa B, Sarkar SK, Mukherjeea N (2003) Organochlorine pesticide residues in sediments of a tropical mangrove estuary, India: implications for monitoring. Environ Int 29:587–592

    Google Scholar 

  • Bidleman TF, Falconer RL, Walla MD (1995) Toxaphene and other organochlorine compounds in air and water at Resolute Bay, NWT Canada. Sci Total Environ 161:55–63

    Google Scholar 

  • Blacksaw R, Molnar L, Larney F (2005) Fertilizer manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot 24:971–980

    Google Scholar 

  • Bohme L, Langer U, Bohme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Google Scholar 

  • Bosma TMP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    CAS  Google Scholar 

  • Brajesh KS, Walker A, Wright DJ (2006) Bioremediation potential of fenamiphos and chlorpyrifos degradingisolates: influence of different environmental conditions. Soil Biol Biochem, 2682–2693

  • Broomhal S, Shine R (2003) Effect of the insecticide endosulfan and presence of congeneric tadpoles on Australian Tree frog (Litoria freycinele) Tadpoles. Arch Environ Contam Toxicol 45:221–226

    Google Scholar 

  • Brown GB, Doube BM (2004) Earthworm ecology. In: Edwards CA (ed) Second. CRC Press, Boca Raton, pp 213–239

    Google Scholar 

  • Burker JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Google Scholar 

  • Buyuksonmez F, Rynk R, Hess T, Bechinski E (2000) Occurrence, degradation and fate of pesticides during composting. Part II. Occurrence and fate de pesticides in compost and composting systems. Compost Sci Util 8:61–81

    Google Scholar 

  • Chakravatry M, Amin PM, Singh HD, Baruah JN, Iyengar MS (1972) A kinetic model for microbial growth on solid hydrocarbons. Biotechnol Bioeng 14:61–73

    Google Scholar 

  • Chaudhuri K, Selvaraj S, Pal AK (1999) Studies on the genotoxicology of endosulfan in bacterial system. Mutat Res 439:63–67

    CAS  Google Scholar 

  • Chiu SW, Ching ML, Fong KL, Moore D (1998) Spentoyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol Res 102:1553–1562

    CAS  Google Scholar 

  • Chubiko MI, Smol-Sike GM, Basova GM (1998) The effect of pesticides on the quality of milk products. Hygi Sanit 2:23–25

    Google Scholar 

  • Colborn T, Thayer K (2000) Aquatic ecosystem: harbingers of endocrine disruption. Ecol Appl 10(40):949–957

    Google Scholar 

  • Cooke AS (1970) The effect of pp′-DDT on tadpoles of the common frog (Rana temporaria). Environ Pollut 57–71

  • Cooper RL, Stoker TE, Tyrey L, Goldman JM, Keith McElroy W (2000) Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicol Sci 53:297–307

    CAS  Google Scholar 

  • Cooperband L (2002) Building soil organic matter with organic amendments. Report by center for integrated agricultural systems, University of Wisconsin–Madison, Madison, 1–16

  • Cox L, Cecchi A, Celis R, Hermos M, Koskinen W, Cornejo J (2001) Effect of exogenous carbon on movement of simazine and 2,4-D in soils. Soil Sci Soc Am J 65:1688–1695

    CAS  Google Scholar 

  • Cycon M, Wojcik M, Piotrowska Seget Z (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemo 76:494–501

    CAS  Google Scholar 

  • Daniel RS, Timothy BP (1991) Effect of moisture on sorption and biodegradation of carbofuran in soil. J Agric Food Chem 39:2060–2063

    Google Scholar 

  • Demand Pattern of Pesticide Use (Tech. Grade) for Agriculture, Pesticide Association of India (1999)

  • Digrak M, Ozcelik S (1998) Effect of some pesticides on soil microorganisms. Bull Environ Contam Toxicol 60:916–922

    CAS  Google Scholar 

  • Dungan R, Ibekwe A, Yates S (2003) Effects of propargyl bromide and 1.3-dichloropropene on microbial communities in an organically amended soil. FEMS Microbiol Ecol 43:75–87

    CAS  Google Scholar 

  • Dutra BK, Fernandes FA, Lauffer AL, Oliveira GT (2009) Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea, Amphipoda). Comp Biochem Physiol Part C Toxicol Pharmacol 149(4):640–646

    CAS  Google Scholar 

  • Ekundayo EO (2003) Effect of common pesticides used in the Niger Delta basin of southern Nigeria on soil microbial populations. Environ Monit Assess 89(1):35–41

    CAS  Google Scholar 

  • Ellis-Tabanor M, Hyslop E (2005) Effect of sub lethal concentrations of endosulfan on growth and fecundity of two species of snails. Bull Environ Contam Toxicol 74:1173–1178

    CAS  Google Scholar 

  • Environmental health perspect (1999) Environew forum killer Environmental health perspect 107: A 62

  • Esposito E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548

    CAS  Google Scholar 

  • Extension Toxicology Network Pesticide Information Profiles (1996) National Pesticide Information Centre, Orgeon University. npic@ace.orst.edu

  • Fogarty A, Tuovinen O (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol Rev 55:225–233

    CAS  Google Scholar 

  • Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT contaminated soils: a review. Bioremediat J 225:1058–1137

    Google Scholar 

  • Gevao B, Semple KT, Jones KC (2003) Bound pesticide residues in soils: a review. Environ Poll 108:3–14

    Google Scholar 

  • Geyti A, Lanzky VF, Dahlstrom K (2005) A DNAPL hotspot of organophosphorous pesticides. Høfde 42 Harboøre Tange, County of Ringkøbing, Denmark

  • Ghadiri H, Rose CW, Connell DW (1995) Degradation of organochlorine pesticides in soils under controlled environment and outdoor conditions. J Environ Manag 43(2):141–151

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microbial Tech 35(4):339–354

    CAS  Google Scholar 

  • Graber E, Dror I, Bercovich F, Rosner M (2001) Enhanced transport of pesticides in a field trial with treated sewage sludge. Chemosphere 44:805–811

    CAS  Google Scholar 

  • Greeshma O, Vasudevan N (2013) Enhanced biodegradation of endosulfan and its major metabolite endosulfate by a biosurfactant producing bacterium. J Environ Sci Health Part B 48:462–469

    Google Scholar 

  • Gupta A, Kaushik CP, Kaushik A (2001) Degradation of Hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 66:794–800

    CAS  Google Scholar 

  • Gurug KS, Tanabe S (2001) Contamination by persistent organochlorines and butylin compounds in the west coast of Sri Lanka. Pollut Bull 42(3):179–186

    Google Scholar 

  • Haigh SD (1996) A review of the interaction of surfactants with organic contaminants in soil. Sci Total Environ 185:161–170

    CAS  Google Scholar 

  • Hance RJ (1973) The effect of nutrients on decomposition of herbicide atrazine and linuron incubated with soil. Pesticide Sci 4:817–822

    CAS  Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotech 18:97–105

    CAS  Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chloro dibenzofuran. Appl Environ Microbiol 16:27–33

    Google Scholar 

  • Hartlieb N, Ertunc T, Schaeffer A, Klein W (2003) Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environ Pollut 126:83–91

    CAS  Google Scholar 

  • Hay AG, Focht DD (1998) Cometabolism of 1,1-dichloro-2,2 bis(4chlorophenyl)ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64:2141–2146

    CAS  Google Scholar 

  • Hay AG, Focht DD (2000) Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microbiol Ecol 31:249–253

    CAS  Google Scholar 

  • Hickey JJ, Anderson DW (1968) Chlorinated hydrocarbons and eggshell changes in raptorial and fish-eating birds. Science 162:271–273

    CAS  Google Scholar 

  • Hickey WJ, Fuster DJ, Lamar RT (1994) Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem 26:1665–1671

    CAS  Google Scholar 

  • Hong H, Xu L, Zhang L, Chen JC, Wong YS, Wan TSM (1995) Environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoriaharbors. Mar Pollut Bull 31:22–36

    Google Scholar 

  • Howard MD, Pope CN (2002) In vitro effects of chlorpyrifos, parathion, methyl parathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats. Toxicology 170(1–2):1–10

    CAS  Google Scholar 

  • Ian Tinsley J (2004) Chemical concepts in pollutant behavior, Second edn. Wiley, London

  • ICAR (1967) Report of the Special Committee on Harmful Effects of Pesticides, NewDelhi, 78

  • Mukherjee I (2012) Influence of organic amendments on the degradation of endosulfan. Bull Environ Contam Toxicol. doi:10.1007/s00128-012-0676-x

  • Jayashree R, Vasudevan N (2006) Residues of organochlorine pesticides in agricultural soils of Thiruvallur district. J Food Agric Environ 4(1):313–316

    Google Scholar 

  • Jayashree R, Vasudevan N (2007a) Effect of tween 80 added to the soil on the degradation of endosulfan by Pseudomonas aeruginosa. Int J Environ Sci Tech 4(2):203–210

    CAS  Google Scholar 

  • Jayashree R, Vasudevan N (2007b) Organochlorine pesticide residues in ground water Thiruvallur district, India. Environ Monit Assess 128:209–215

    CAS  Google Scholar 

  • Jennings EM, Tanner RS (2000) Biosurfactant—producing bacteria found in contaminated and uncontaminated soils. In: proceedings of the conference on hazardous waste research

  • Jerald LS (1996) Environmental modelling; fate and transport of pollutants in water, and soil. Wiley, London

    Google Scholar 

  • Juan C, Sandoval Mata, Karns Jeffrey, Torrents Alba (2001) Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. J Agric Food Chem 49:3296–3303

    Google Scholar 

  • Julia F, Trevor A, Kevin B, Jackie A (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediat J 5(3):225–246

    Google Scholar 

  • Kannan KS, Holcombe RF, Jain SK, Alvarez-Hernandez X, Chervenak R, Wolf RE, Glass J (2002) Evidence for the induction of apoptosis by endosulfan in a human T-cell leukemic line. Mol Cell Biochem 205:53–66

    Google Scholar 

  • Kantachote R, Naidu B, Williams N, McClure N, Megharaj M, Singleton I (2004) Bioremediation of DDT-contaminated soil: enhancement by seaweed addition. J Chem Tech Biotech 79(6):632–638

    CAS  Google Scholar 

  • Karin O, Jonsson A, Stenstro J (2010) A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide degrading microorganisms. Biodegradation 21:21–29

    Google Scholar 

  • Karpouzas DG, Walker A (2000) Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil. Soil Biol Biochem 32:1753–1762

    CAS  Google Scholar 

  • Katayama A, Fujimura Y, Kuwatsuka S (1993) Microbial degradation of DDT at extremely low concentrations. J Pestic Sci 18:353–359

    CAS  Google Scholar 

  • Katie A, Fenlon Kevin C, Jones Kirk T, Semple J (2007) Development of microbial degradation of cypermethrin and diazinon in organically and conventionally managed soils. Environ Monit 9:510–515

    Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BKM-F- 1767). Appl Environ Microbiol 56:2347–2353

    CAS  Google Scholar 

  • Khan SU (1982) Bound pesticide residues in soil and plants. Residue Rev 84:1–25

    CAS  Google Scholar 

  • Khan S, Khan JA, Jabin S (2000) Effect of endosulfan on the seed germination, growth and nutrients uptake of fenugreek plant. J Ind Pollut Control 16:225–230

    CAS  Google Scholar 

  • Khandakar UR, Shrikhande WT, Shinde DA (2003) Nutrient availability to egg plant (Solanum melongena L.) as influenced by pesticide application. J Ind Soc Soil Sci 42:568–571

    Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathway utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    Google Scholar 

  • Kumar M, Gupta SK, Garg SK, Kumar A (2006) Biodegradation of hexachlorocyclohexane-isomers in contaminated soils. Soil Biol Biochem 38(8):2318–2327

    CAS  Google Scholar 

  • Kumar M, Lakshmi CV, Khanna S (2008) Biodegradation and bioremediation of endosulfan contaminated soil. Bioresour Technol 9(8):3116–3122

    Google Scholar 

  • Lambert MRK (1997) Effect of pesticides on amphibians and reptiles in sub-Saharan Africa. Rev Environ Contam Toxicol 150:31–73

    CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20

    CAS  Google Scholar 

  • Laouedj A, Schenk C, Pfohl-Leskowicz A, Keith G, Schonta D, Guillemaut P, Rether B (1995) Detection of DNA adducts in declining hop plants grown on fields formerly treated with hepatochlor a persistent insecticide. Environ Poll 90:409–414

    CAS  Google Scholar 

  • Lee JS, Tanabe S, Takemoto N, Kubodera T (1997) Organochlorine residues in deep-sea organisms from Suruga Bay Japan. Mar Pollut Bull 34:250–258

    CAS  Google Scholar 

  • Li JL, Chen BH (2009) Surfactant-mediated biodegradation of polycyclic aroamatic hydrocarbons. Materials 27:6–94

    CAS  Google Scholar 

  • Li K, Xing B, Torello W (2005) Effects of organic fertilizer derived dissolved organic matter on pesticides sorption and leaching. Environ Pollut 134:187–194

    CAS  Google Scholar 

  • Li W, Dai Y, Xue B, Li Y, Peng X, Zhang Y, Yan Y (2009) Biodegradation and detoxification of endosulfan in aqueous medium and soil by Achromobacter xylosoxidans strain CS5. J Hazad Mat 167(1–3):209–216

    CAS  Google Scholar 

  • Ling T, Hong Y (2011) Fluroxypyr biodegradation in soils by multiple factors. Environ Monit Asses 175(1–4):227–238

    Google Scholar 

  • Lock K, De Schamphelaere KAC, Janssen CR (2002) The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 217–221

  • Loganathan BG, Kannan K (1994) Global organochlorine contamination trends: an overview. Ambio 23:87–191

    Google Scholar 

  • Lopez L, Pozo MA, Gomez A, Calvo L, Lopea JG (2002) Studies on the effects of the insecticide aldrin on aquatic microbial populations. Int Biodeterior Biodegration 50:83–87

    CAS  Google Scholar 

  • Lorenz ES (2006) Toxicity of pesticides. Pesticide safety fact sheet, Pennsylvania State University

  • Maier R, Valdes JJ (2000) Bioavailability and its importance to bioremediation. Int Soc Environ Biotechnol Environ Monit Biodiagration 59–78

  • Majumdar K, Singh N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630–637

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS (2000) Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45°C. J Surfactants Deterg 5:11–17

    Google Scholar 

  • Manickam N, Bajaj A, Harvinder SS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05 Biodegradation. doi:10.1007/s10532-012-9543-z

  • Marigoudar SR, Nazeer Ahmed R, David M (2009) Impact of cypermethrin on behavioural responses in the freshwater teleost, Labeo rohita (Hamilton). World J Zool 94(1):19–23

    Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    CAS  Google Scholar 

  • Martins JM, Mermoid A (1998) Sorption and degradation of four nitroaromatic herbicides in mono and multi-solute saturated/unsaturated soil batch systems. J Contam Hydrol 33:187–210

    CAS  Google Scholar 

  • Mathava K, Ligy P (2006) Bioremediation of endosulfan contaminated soil and water optimization of operating conditions in laboratory scale reactors. J Hazard Mat 354–364

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2002) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42

    Google Scholar 

  • Meriel W (2005) Pesticide: sowing poison, growing hunger, reaping sorrow. Pesticide Action Network Asia and Pacific Policy Research and Analysis, vol 2. Penang, Malaysia, pp 1–27

  • Miller RM, Bartha R (1989) Evidence from liposome encapsulation for transport-limited microbial-metabolism of solid alkanes. Appl Environ Microbiol 55:269–274

    CAS  Google Scholar 

  • Mitra J, Raghu K (1999) Effect of DDT residues in soil on productivity of oil seed crops. Trop Agric Res Ext 2:33–39

    Google Scholar 

  • Mohsen F, Gholam HH, Alireza K (2005) Organic amendments to enhance atrazine and metamitron degradation in two contaminated soils with contrasting textures. Soil Sediment Contam 14(4):345–355

    Google Scholar 

  • Moorman T, Cowan J, Arthur E, Coats J (2001) Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol Fertil Soils 33:541–545

    CAS  Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    CAS  Google Scholar 

  • Mulbry W, Kearney PC (1991) Degradation of pesticides by micro-organisms and the potential for genetic manipulation. Crop Prot 10(5):334–346

    CAS  Google Scholar 

  • Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol 60:51–55

    CAS  Google Scholar 

  • Namkoong W, Hwang E, Park J, Choi J (2002) Bioremediation of dieselcontaminated soil with composting. Environ Pollut 119:23–31

    CAS  Google Scholar 

  • Nasser AA, Ronald ET (1994) Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil. Biodegradation 5:29–35

    Google Scholar 

  • Neeru K, Asha G, Santosh S, Ramesh KM, Anushree M (2008) Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technol 99:4642–4647

    Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PSC (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)-acetic acid in soils. Appl Environ Microbiol 35(7):582–587

    Google Scholar 

  • Palma G, Alvear M, Salazar I (2002) Utilization of waste cells in the for release formulations control of simazine and trifluraline. Bull Chil Soc Chem 47:175–180

    CAS  Google Scholar 

  • Pandey RK, Rai SN (1993) Effect of varying doses of pesticides on nitrifying bacteria and nitrogen transformation. Indian J Agric Chem 26:123–132

    CAS  Google Scholar 

  • Paola P, Parmigiani S, vom Saal FS (2001) Effects of prenatal exposure to low doses of diethylstilbestrol, o, p’DDT, and methoxychlor on postnatal growth and neurobehavioral development in male and female mice. Hormones Behav 40(2):252–265

    Google Scholar 

  • Park J-H, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. AEM 3288–3298

  • Parsons JR.,Goorissen H, Weiland AR, Bruijne de JA, Springael D, van der D Lelie, Mergeay M (1995) Substrate range of the (chloro) biphenyl degradation pathway of Alcaligenes sp. JB1, In: RE Hinchee, CMVogel, and FJ Brockman (Eds) Microbial processes for bioremediation. Bioremediation, 3(8), 169–175

  • Phillips T, Bell G, Raymond D, Shaw K, Seech (2001) A DARAMEND technology for in situ bioremediation of soil containing organochlorine pesticides. 6th International HCH and Pesticides Forum, Forum Book, Poznan, Poland, 20–22 March 2001, Ed. John Vijgen, 487–490

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Tech 30:1–11

    CAS  Google Scholar 

  • Plaza C, Polo A, Brunetti G, Garcia-Gil J, Orazio V (2003) Soil fulvic acid properties as a means to assess the use of pig amendment. Soil Tillage Res 74:179–190

    Google Scholar 

  • Pothuluri JV, Moorman TB (1990) Aerobic and anaerobic degradation of alachlor in samples from a surface-to-groundwater profile. J Environ Qual 19:525–530

    CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegradation 64:397–402

    CAS  Google Scholar 

  • Qing H, Zhang Z, Hong Y, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegradation 59:55–61

    Google Scholar 

  • Quintero JC, Lu Chau T, Moreira MT, Feijoo G, Lema JM (2007) Bioremediation of HCH present in soil by the white-rot fungus Bjerkanderaadusta in a slurry batch bioreactor. Int Biodeterior Biodegradation 60:319–326

    CAS  Google Scholar 

  • Rai DK, Sharma B (2007) Carbofuran-induced oxidative stress in mammalian brain. Mol Biotech 37(1):66–71

    CAS  Google Scholar 

  • Rajinder K, Brajesh S, Gupta VK (2012) Biodegradation of Fipronil by Paracoccus sp. in different types of soil. Bull Environ Contam Toxicol 88:781–787

    Google Scholar 

  • Rajkumar B, Afsar M, Manonmani HK (2004) Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination. Chemosphere 56:803–811

    Google Scholar 

  • Rao PSC, Davidson JM (1998) Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. Environmental impact of nonpoint source pollution, MR Overcash; JM Davidson (eds). Ann Airbor Science Publishers, Ann. Airbor, Michigon, pp. 23–68

  • RB Associates, Inc Handbook of Remedial Action at Waste Disposal Sites, EPA Report (1982) No. 625/6-82-006)

  • Reid BJ, Jones KC, Semple KT (2007) Bioavailability of persistent organic pollutants in soils and sediments perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Google Scholar 

  • Rekha SN, Naik R, Prasad R (2004) Pesticide residue in organic and conventional food–risk analysis. Chem Health Saf 13:12–19

    Google Scholar 

  • Relyea RA (2005) The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol Appl 15(4):1118–1124

    Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mat 140:325–332

    CAS  Google Scholar 

  • Roberts TR, Hutson DH, Jewess PJ (1998) Metabolic pathways of agrochemicals: Insecticides and fungicides. Part 2. R Soc Chem G B 1134–1137

  • Robles Gonzalez I, Ryos-Leal E, Ferrera-Cerrato R, Esparza-Garcy F, Rinderkenecht-Seijas N, Poggi-Varaldo HM (2006) Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2,4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron acceptor and supplementation with an organic carbon source. Process Biochem 41:1951–1960

    CAS  Google Scholar 

  • Rouse JD, Sabatini DA, Suflita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol 24:325–370

    CAS  Google Scholar 

  • Rousseaux S, Hartmann A, Lagacherie B, Piutti S, Andreux F, Soulas G (2003) Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum densities. Chemosphere 51:569–576

    CAS  Google Scholar 

  • Russell L, Carr HW, Chambers JA, Guarisco JR, Richardson JT, Chambers JE (2001) Effects of repeated oral postnatal exposure to chlorpyrifos on open-field behavior in juvenile rats. Toxicol Sci 59:260–267

    Google Scholar 

  • Sahu SK, Patnaik KK, Bhuyan S, Sethunathan N (1993) Degradation of soil-applied isomers of hexachlorocyclohexane by a Pseudomonas sp. Soil Biol Biochem 25:87–391

    Google Scholar 

  • Said-Pullicino D, Gigliotti G, Vella A (2004) Environmental fate of triasulfuron in soils amended with municipal waste compost. J Environ Qual 33:1743–1751

    CAS  Google Scholar 

  • Saikia SS, Deka S, Deka M, Sarma H (2012) Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J Basic Microbiol 52:446–457

    CAS  Google Scholar 

  • Sandahl JF, Baldwin DH, Jenkins JJ, Nathaniel LS (2005) Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in Coho salmon exposed to chlorpyrifos. Environ Toxicol Chem 24(1):136–145

    CAS  Google Scholar 

  • Sasikala C, Jiwal S, Pallabi R, Ramya M (2012) Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil. World J Microbiol Biotechnol 28:1301–1308

    CAS  Google Scholar 

  • Scholz JM, Schwedes J, Deckwer WD (1998) Use of a rotary drum reactor with grinding beads for microbial soil remediation. Chem Eng Technol 479–483

  • Senesi N (1992) Binding mechanisms of pesticides to soil humic substances. Sci Total Environ 123(124):63–76

    Google Scholar 

  • Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis Gareth, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52(10):3030–3035

    CAS  Google Scholar 

  • Shanmugam M, Venkateswarlu M, Naveed A (2000) Effect of pesticides on the freshwater crab, Barytelphusa cunicularis (Westwood). J Ecotoxicol Environ Monit 10:273–279

    CAS  Google Scholar 

  • Shetty PK, Murugan M, Sreeja KG (2008) Crop protection stewardship in India: wanted or unwanted. Curr Sci 95(4):457–464

    Google Scholar 

  • Sidal U, Yilmaz ES (2012) Production of Rhamnolipid (A Biosurfactant) using free and immobilized cells of Pseudomonas sp. Kafkas Univ Vet Fak Derg 18(2):285–289

    Google Scholar 

  • Sigua GC, Adjei M, Rechcigl J (2005) Cumulative and residual effects of repeated sewage sludge applications: forage productivity and soil quality implications in south Florida, USA. Environ Sci Pollut Res Int 12:80–88

    Google Scholar 

  • Sims R, Bass J (1982) Review of in-place treatment techniques for contaminated surface soil. Vol 1: technical evaluation. EPA, Report No. EPA- 540/2-84-003a

  • Singh BK, Kuhad RC (1999) Biodegradation of lindan (hexachlorocyclohexa) by the white rot fungus Trametes hirsutus. Lett Appl Microbiol 28:238–241

    CAS  Google Scholar 

  • Singh N, Megharaj M, Gates WP, Churchman GJ, Anderson J, Kookana RS, Naidu R, Chen Z, Slade PG, Sethunathan N (2003) Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J Agric Food Chem 51:2653–2658

    CAS  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. AEM 70:4855–4863

    CAS  Google Scholar 

  • Sivasankaran MA, Sivamurthy Reddy S, Govindaradjan S, Ramesh R (2007) Organochlorine residuals in groundwater of Pondicherry region. J Environ Sci Eng 49(1):7–12

    CAS  Google Scholar 

  • Smith AG, Hayes WJ, Laws ER (1991) Chlorinated hydrocarbons insecticides. In: handbook of pesticide toxicology volume 2, Classes of pesticides. Academic Press, New York, 731–915

  • Song NH, Chen L, Yang H (2008) Effect of dissolved organic matter on mobility and activation of chlorotuluron in soil and wheat. Geoderma 146:344–352

    CAS  Google Scholar 

  • Strachan WMJ, Erikso G, Kylin H, Jensen S (1994) Organochlorine compounds in pine needles-methods and trends. Environ Toxicol Chem 13(3):5403–5409

    Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of Atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. AEM 64(9):3368–3375

    CAS  Google Scholar 

  • Saha S, Kaviraj A (2009) Effects of cypermethrin on some biochemical parameters and its amelioration through dietary supplementation of ascorbic acid in freshwater catfish Heteropneustes fossili. Chemosphere 74(9):1254–1259

    CAS  Google Scholar 

  • Sumit Kumar G, Sumathi S (2007) Studies on dechlorination of DDT (1,1,1-trichloro-2, bis(4-chlorophenyl ethane) using magnesium/palladium bimetallic system. J Hazard Mater B 139:146–153

    Google Scholar 

  • Supriya G, Dileep SK (2009) Biodegradation of α and β endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation 20:199–207

    Google Scholar 

  • Sutherland TD, Horne I, Harcourt RL, Russell RJ, Oakeshott JG (2002) Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol 93:380–389

    Google Scholar 

  • Tang Y, Qi JL, Krieger-Brockett B (2005) Evaluating factors that influence microbial phenanthrene biodegradation rates by regression with categorical variables. Chemos 59:729–741

    CAS  Google Scholar 

  • Tariq S, Okeke BC, Arshad M, Frankenberger WT (2003) Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea sp. J Agric Food Chem 51(27):8015–8019

    Google Scholar 

  • The WHO recommended classification of pesticide by hazard and guidelines to classification (2004) WHO press, Geneva ISBN 9241546638

  • Thibault GT, Elliott NW (1979) Accelerating the biological clean up of hazardous materials spills. In: proceedings oil and hazards materials. Spills: prevention-control-cleanup-recovery-disposal

  • Thom E, Ottow JCG, Benckiser G (1997) Degradation of the fungicide difenoconazolein in a silt loam soil as affected by pretreatment and organic amendment. Environ Pollut 96:409–414

    CAS  Google Scholar 

  • Torrents A, Jayasundera S (1997) The sorption of nonionic pesticides onto clays and the influence of natural organic carbon. Chemo 35(7):1549–1565

    CAS  Google Scholar 

  • Traina ME, Rescia M, Urbani E, Mantovani A, Macri C, Ricciardi C, Stazi AV, Fazzi P, Cordelli E, Eleuteri P, Leter G, Spano M (2003) Long-lasting effects of lindane on mouse spermatogenesis induced by in utero exposure. Reprod Toxicol 17(1):25–35

    CAS  Google Scholar 

  • Veenanadig NK, Gowthama MK, Karanth NGK (2000) Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Eng 22:95–99

    CAS  Google Scholar 

  • Venkata Mohan S, Sirisha K, Chandrasekhara Rao V, Sarma PN, Jayarama Reddy S (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mat B 116:39–48

    Google Scholar 

  • Venkata Mohan S, Sirisha K, Chandrasekhara Rao V, Sarma PN, Jayarama Reddy S (2007) Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotoxicol Environ Saf 68:252–262

    CAS  Google Scholar 

  • Vidali M (2000) Bioremediation an overview. Pure Appl Chem 73:1163–1172

    Google Scholar 

  • Vidhya Lakshmi C, Mohit K, Sunil K (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeterior Biodegradation 62:204–209

    Google Scholar 

  • Vidhya Lakshmi C, Mohit K, Sunil K (2009) Biodegradation of Chlorpyrifos in soil by enriched cultures. Curr Microbiol 58:35–38

    Google Scholar 

  • Vogue PA, Kerle EA, Jenkins JJ (1994) OSU extension pesticide properties database. National Pesticide Information Centre. npic@ace.orst.edu

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    CAS  Google Scholar 

  • Vorkamp K, Kellner E, Taube E, Moller K, Herrmann R (2002) Fate of methidathion residues in biological waste during anaerobic digestion. Chemos 48:287–297

    CAS  Google Scholar 

  • Wanner U, Fuhr F, Burauel P (2005) Influence of the amendment of corn straw on the degradation behaviour of the fungicide dithianon in soil. Environ Pollut 133:63–70

    CAS  Google Scholar 

  • Weir KM, Sutherland TD, Horne I, Russel RJ, Oakeshott JG (2006) A single monooxygenase, Ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl Environ Microbiol 72:3524–3530

    Google Scholar 

  • Wen L, Yun D, Beibei X, Yingying L, Xiang P, Zhangg J, Yanchun Y (2009) Biodegradation and detoxification of endosulfan in aqueous medium and soil by Achromobacter xylosoxidans strain CS5. J Hazard Mater 167:209–216

    Google Scholar 

  • Willumsen PA, Karlson U (1997) Screening of bacteria isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423

    Google Scholar 

  • Worrall F, Fernandez-Perez M, Johnson A, Flores-Cesperedes F, Gonzalez-Pradas E (2001) Limitations on the role of incorporated organic matter in reducing pesticide leaching. J Contam Hydrol 49:241–262

    CAS  Google Scholar 

  • Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    CAS  Google Scholar 

  • Yazdandoost MY, Katdare MS (2000) Water quality index of major rivers in Pune. J Ind Pollut Contam 16:231–238

    CAS  Google Scholar 

  • Zagal E, Rodryguez N, Vidal I, Quezada L (2002) Microbial activity in a volcanic ash soil under different agricultural management. Agric Tech 62:297–309

    Google Scholar 

  • Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greeshma Odukkathil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odukkathil, G., Vasudevan, N. Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12, 421–444 (2013). https://doi.org/10.1007/s11157-013-9320-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9320-4

Keywords

Navigation