Skip to main content

Advertisement

Log in

Management of radioiodine refractory differentiated thyroid cancer: the Latin American perspective

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Radioiodine (RAI) refractory differentiated thyroid cancer is an uncommon and challenging situation that requires a multidisciplinary approach to therapeutic strategies. The definition of RAI-refractoriness is usually a clear situation in specialized centers. However, the right moment for initiation of multikinase inhibitors (MKI), the time and availability for genomic testing, and the possibility of prescribing MKI and selective kinase inhibitors differ worldwide.

Latin America (LA) refers to the territories of the world that stretch across two regions: North America (including Central America and the Caribbean) and South America, containing 8.5% of the world’s population. In this manuscript, we critically review the current standard approach recommended for patients with RAI refractory differentiated thyroid cancer, emphasizing the challenges faced in LA. To achieve this objective, the Latin American Thyroid Society (LATS) convened a panel of experts from Brazil, Argentina, Chile, and Colombia. Access to MKI compounds continues to be a challenge in all LA countries. This is true not only for MKI but also for the new selective tyrosine kinase inhibitor, which will also require genomic testing, that is not widely available. Thus, as precision medicine advances, significant disparities will be made more evident, and despite efforts to improve coverage and reimbursement, molecular-based precision medicine remains inaccessible to most of the LA population. Efforts should be undertaken to alleviate the discrepancies between the current state-of-the-art care for RAI-refractory differentiated thyroid cancer and the present situation in Latin America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AE:

Adverse events

ATA:

American Thyroid Association

CR:

Complete response

CT:

Computed tomography

DTC:

Differentiated thyroid cancer

ECOG:

Eastern Cooperative Oncologic Group

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

FDG-PET/CT:

18 F-fluorodeoxyglucose positron-emission tomography-computed tomography

FTC:

Follicular thyroid cancer

LA:

Latin America

LATS:

Latin American Thyroid Society

MAPK:

Mitogen-activated protein kinase

MKI:

Multikinase inhibitors

MRI:

Magnetic resonance imaging

NGS:

Next-generation sequencing

NIS:

Na/I symporter

NTRK:

Neurotrophic tyrosine receptor kinase

ORR:

Overall response rate

OS:

Overall survival

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol-3 kinase

PR:

Partial response

PTC:

Papillary thyroid cancer

RAI:

Radioiodine

RAI-R:

Radioiodine-refractory

RECIST:

Response Evaluation Criteria In Solid Tumors

RET:

Rearranged during transfection

RTK:

Tyrosine kinase receptors

SD:

Stable disease

sTKI:

Selective tyrosine kinase inhibitor

Tg:

Thyroglobulin

TRKs:

Tropomyosin receptor kinase

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Romei C, Elisei R. A narrative review of genetic alterations in primary thyroid epithelial Cancer. Int J Mol Sci 2021; 22:1726.

  2. World Health Organization International Agency for Research on Cancer (IARC). GLOBOCAN: estimated cancer incidence, mortality and prevalence worldwide. Available from: http://globocan.iarc.fr.

  3. Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2023: incidência do Câncer no Brasil. Rio de Janeiro: INCA, 2022. Available from: https://www.inca.gov.br/publicacoes/livros/estimativa-2023-incidencia-de-cancer-no-brasil.

  4. Scheffel RS, Zanella AB, Antunes D, et al. Low recurrence rates in a cohort of differentiated thyroid carcinoma patients: a Referral Center Experience. Thyroid. 2015;25:883–9.

    Article  PubMed  Google Scholar 

  5. Ward LS, Scheffel RS, Hoff AO, et al. Treatment strategies for low-risk papillary thyroid carcinoma: a position statement from the thyroid Department of the brazilian society of Endocrinology and Metabolism (SBEM). Arch Endocrinol Metab. 2022;66:522–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cabanillas ME, Ryder M, Jimenez C. Targeted therapy for advanced thyroid Cancer: kinase inhibitors and Beyond. Endocr Rev. 2019;40:1573–604.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2014;2:356–8.

    Article  PubMed  Google Scholar 

  9. Fugazzola L, Elisei R, Fuhrer D et al. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur Thyroid J 2019; 8:227–245.

  10. Tuttle RM, Ahuja S, Avram AM, et al. Controversies, Consensus, and collaboration in the Use of (131)I therapy in differentiated thyroid Cancer: a Joint Statement from the american thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the european thyroid Association. Thyroid. 2019;29:461–70.

    Article  PubMed  Google Scholar 

  11. Shonka DC Jr, Ho A, Chintakuntlawar AV, et al. American Head and Neck Society endocrine surgery section and international thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment. Head Neck. 2022;44:1277–300.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

    Article  Google Scholar 

  13. Romitti M, Ceolin L, Siqueira DR, et al. Signaling pathways in follicular cell-derived thyroid carcinomas (review). Int J Oncol. 2013;42:19–28.

    Article  CAS  PubMed  Google Scholar 

  14. Scheffel RS, de Cristo AP, Romitti M, et al. The BRAF(V600E) mutation analysis and risk stratification in papillary thyroid carcinoma. Arch Endocrinol Metab. 2021;64:751–7.

    PubMed  Google Scholar 

  15. Giorgenon TMV, Carrijo FT, Arruda MA, et al. Preoperative detection of TERT promoter and BRAFV600E mutations in papillary thyroid carcinoma in high-risk thyroid nodules. Arch Endocrinol Metab. 2019;63:107–12.

    PubMed  PubMed Central  Google Scholar 

  16. Pessoa-Pereira D, Medeiros M, Lima VMS, et al. Association between BRAF (V600E) mutation and clinicopathological features of papillary thyroid carcinoma: a brazilian single-centre case series. Arch Endocrinol Metab. 2019;63:97–106.

    PubMed  PubMed Central  Google Scholar 

  17. Oler G, Cerutti JM. High prevalence of BRAF mutation in a brazilian cohort of patients with sporadic papillary thyroid carcinomas: correlation with more aggressive phenotype and decreased expression of iodide-metabolizing genes. Cancer. 2009;115:972–80.

    Article  CAS  PubMed  Google Scholar 

  18. Scheffel RS, Dora JM, Maia AL. BRAF mutations in thyroid cancer. Curr Opin Oncol. 2022;34:9–18.

    Article  CAS  PubMed  Google Scholar 

  19. Yoo SK, Lee S, Kim SJ, et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12:e1006239.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chu YH, Dias-Santagata D, Farahani AA, et al. Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC). Mod Pathol. 2020;33:2186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galuppini F, Vianello F, Censi S, et al. Differentiated thyroid carcinoma in Pediatric Age: genetic and clinical scenario. Front Endocrinol (Lausanne). 2019;10:552.

    Article  PubMed  Google Scholar 

  22. Rangel-Pozzo A, Sisdelli L, Cordioli MIV et al. Genetic Landscape of Papillary thyroid Carcinoma and Nuclear Architecture: an overview comparing Pediatric and adult populations. Cancers (Basel) 2020;12:3146.

  23. Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122:1097–107.

    Article  CAS  PubMed  Google Scholar 

  24. Pekova B, Sykorova V, Mastnikova K et al. NTRK Fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers (Basel) 2021;13:1932.

  25. Ganly I, Ricarte Filho J, Eng S, et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J Clin Endocrinol Metab. 2013;98:E962–972.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Penna GC, Pestana A, Cameselle JM, et al. TERTp mutation is associated with a shorter progression free survival in patients with aggressive histology subtypes of follicular-cell derived thyroid carcinoma. Endocrine. 2018;61:489–98.

    Article  CAS  PubMed  Google Scholar 

  27. Eszlinger M, Stewardson P, McIntyre JB et al. Systematic population-based identification of NTRK and RET fusion-positive thyroid cancers. Eur Thyroid J 2022;11:e210061.

  28. Sciuto R, Romano L, Rea S, et al. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol. 2009;20:1728–35.

    Article  CAS  PubMed  Google Scholar 

  29. Pitoia F, Jauk F, Herzovich V, et al. Medicina de precisión en pacientes con carcinoma de tiroides derivado del epitelio folicular con fusiones del oncogén NTRK: la perspectiva argentina. Rev Argent Endocrinol Metab. 2022;59:7–16.

    CAS  Google Scholar 

  30. Sabra MM, Sherman EJ, Tuttle RM. Tumor volume doubling time of pulmonary metastases predicts overall survival and can guide the initiation of multikinase inhibitor therapy in patients with metastatic, follicular cell-derived thyroid carcinoma. Cancer. 2017;123:2955–64.

    Article  CAS  PubMed  Google Scholar 

  31. Haugen BR, Alexander EK, Bible KC et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26:1-133.

  32. Kuba VM, Caetano R, Coeli CM, Vaisman M. Utility of positron emission tomography with fluorodeoxyglucose (FDG-PET) in the evaluation of thyroid cancer: a systematic review. Arq Bras Endocrinol Metabol. 2007;51:961–71.

    Article  PubMed  Google Scholar 

  33. Leboulleux S, Schroeder PR, Schlumberger M, Ladenson PW. The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers. Nat Clin Pract Endocrinol Metab. 2007;3:112–21.

    Article  PubMed  Google Scholar 

  34. Wang W, Larson SM, Tuttle RM, et al. Resistance of [18f]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid. 2001;11:1169–75.

    Article  CAS  PubMed  Google Scholar 

  35. Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  CAS  PubMed  Google Scholar 

  36. Esteva D, Muros MA, Llamas-Elvira JM, et al. Clinical and pathological factors related to 18F-FDG-PET positivity in the diagnosis of recurrence and/or metastasis in patients with differentiated thyroid cancer. Ann Surg Oncol. 2009;16:2006–13.

    Article  CAS  PubMed  Google Scholar 

  37. Rivera M, Ghossein RA, Schoder H, et al. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113:48–56.

    Article  PubMed  Google Scholar 

  38. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vaisman F, Tala H, Grewal R, Tuttle RM. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid. 2011;21:1317–22.

    Article  CAS  PubMed  Google Scholar 

  40. American Thyroid Association Guidelines Taskforce on Thyroid N, Differentiated Thyroid C, Cooper DS, et al. Revised american thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  Google Scholar 

  41. Jerkovich F, Abelleira E, Bueno F et al. Active Surveillance of Small Metastatic Lymph Nodes as an Alternative to Surgery in Selected Patients with Low-Risk Papillary Thyroid Cancer: A Retrospective Cohort Study. Thyroid 2022;32:1178–83.

  42. Rondeau G, Fish S, Hann LE, et al. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid. 2011;21:845–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tufano RP, Clayman G, Heller KS, et al. Management of recurrent/persistent nodal disease in patients with differentiated thyroid cancer: a critical review of the risks and benefits of surgical intervention versus active surveillance. Thyroid. 2015;25:15–27.

    Article  PubMed  Google Scholar 

  44. Urken ML, Milas M, Randolph GW, et al. Management of recurrent and persistent metastatic lymph nodes in well-differentiated thyroid cancer: a multifactorial decision-making guide for the thyroid Cancer Care Collaborative. Head Neck. 2015;37:605–14.

    Article  PubMed  Google Scholar 

  45. Walter LB, Scheffel RS, Zanella AB et al. Active Surveillance of Differentiated Thyroid Cancer Metastatic Cervical Lymph Nodes: A Retrospective Single-Center Cohort Study. Thyroid 2023;33:312–20.

  46. Nava CF, Scheffel RS, Cristo AP, et al. Neoadjuvant multikinase inhibitor in patients with locally advanced unresectable thyroid carcinoma. Front Endocrinol (Lausanne). 2019;10:712.

    Article  PubMed  Google Scholar 

  47. Danilovic DLS, Castro G Jr, Roitberg FSR, et al. Potential role of sorafenib as neoadjuvant therapy in unresectable papillary thyroid cancer. Arch Endocrinol Metab. 2018;62:370–5.

    PubMed  PubMed Central  Google Scholar 

  48. Wang JR, Zafereo ME, Dadu R, et al. Complete Surgical Resection following neoadjuvant Dabrafenib Plus Trametinib in BRAF(V600E)-Mutated anaplastic thyroid carcinoma. Thyroid. 2019;29:1036–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kiess AP, Agrawal N, Brierley JD, et al. External-beam radiotherapy for differentiated thyroid cancer locoregional control: a statement of the american Head and Neck Society. Head Neck. 2016;38:493–8.

    Article  PubMed  Google Scholar 

  50. Nervo A, Ragni A, Retta F, et al. Interventional Radiology approaches for liver metastases from thyroid Cancer: a Case Series and Overview of the literature. J Gastrointest Cancer. 2021;52:823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wertenbroek MW, Links TP, Prins TR, et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid. 2008;18:1105–10.

    Article  PubMed  Google Scholar 

  52. Wexler JA. Approach to the thyroid cancer patient with bone metastases. J Clin Endocrinol Metab. 2011;96:2296–307.

    Article  CAS  PubMed  Google Scholar 

  53. Andrade F, Probstner D, Decnop M, et al. The impact of Zoledronic Acid and Radioactive Iodine Therapy on Morbi-Mortality of patients with bone metastases of thyroid Cancer derived from follicular cells. Eur Thyroid J. 2019;8:46–55.

    Article  CAS  PubMed  Google Scholar 

  54. Pitoia F, Jerkovich F, Trimboli P, Smulever A. New approaches for patients with advanced radioiodine-refractory thyroid cancer. World J Clin Oncol. 2022;13:9–27.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Capdevila J, Iglesias L, Halperin I, et al. Sorafenib in metastatic thyroid cancer. Endocr Relat Cancer. 2012;19:209–16.

    Article  CAS  PubMed  Google Scholar 

  56. Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  Google Scholar 

  58. Brose MS, Worden FP, Newbold KL, et al. Effect of age on the efficacy and safety of Lenvatinib in Radioiodine-Refractory differentiated thyroid Cancer in the Phase III SELECT Trial. J Clin Oncol. 2017;35:2692–9.

    Article  CAS  PubMed  Google Scholar 

  59. Tahara M, Kiyota N, Hoff AO, et al. Impact of lung metastases on overall survival in the phase 3 SELECT study of lenvatinib in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer. 2021;147:51–7.

    Article  CAS  PubMed  Google Scholar 

  60. Brose MS, Frenette CT, Keefe SM, Stein SM. Management of sorafenib-related adverse events: a clinician’s perspective. Semin Oncol. 2014;41(Suppl 2):1–S16.

    Article  Google Scholar 

  61. Brose MS, Smit JWA, Lin CC, et al. Multikinase inhibitors for the treatment of asymptomatic Radioactive iodine-refractory differentiated thyroid Cancer: global noninterventional study (RIFTOS MKI). Thyroid. 2022;32:1059–68.

    Article  CAS  PubMed  Google Scholar 

  62. Filetti S, Durante C, Hartl DM, et al. ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer. Ann Oncol. 2022;33:674–84.

    Article  CAS  PubMed  Google Scholar 

  63. Fullmer T, Cabanillas ME, Zafereo M. Novel therapeutics in Radioactive iodine-resistant thyroid Cancer. Front Endocrinol (Lausanne). 2021;12:720723.

    Article  PubMed  Google Scholar 

  64. Brose MS, Panaseykin Y, Konda B, et al. A randomized study of Lenvatinib 18 mg vs 24 mg in patients with radioiodine-refractory differentiated thyroid Cancer. J Clin Endocrinol Metab. 2022;107:776–87.

    Article  PubMed  Google Scholar 

  65. Brose MS, Robinson B, Sherman SI, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22:1126–38.

    Article  CAS  PubMed  Google Scholar 

  66. Jerkovich F, Califano I, Bueno F, et al. Real-life use of lenvatinib in patients with differentiated thyroid cancer: experience from Argentina. Endocrine. 2020;69:142–8.

    Article  CAS  PubMed  Google Scholar 

  67. Treistman N, Nobre GM, Tramontin MY, et al. Prognostic factors in patients with advanced differentiated thyroid cancer treated with multikinase inhibitors - a single brazilian center experience. Arch Endocrinol Metab. 2021;65:411–20.

    PubMed  PubMed Central  Google Scholar 

  68. Verburg FA, Amthauer H, Binse I, et al. Questions and controversies in the clinical application of tyrosine kinase inhibitors to treat patients with Radioiodine-Refractory differentiated thyroid carcinoma: Expert Perspectives. Horm Metab Res. 2021;53:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haddad RI, Bischoff L, Ball D, et al. Thyroid carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20:925–51.

    Article  CAS  PubMed  Google Scholar 

  70. Okamoto K, Ikemori-Kawada M, Jestel A, et al. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med Chem Lett. 2015;6:89–94.

    Article  CAS  PubMed  Google Scholar 

  71. Gianoukakis AG, Dutcus CE, Batty N, et al. Prolonged duration of response in lenvatinib responders with thyroid cancer. Endocr Relat Cancer. 2018;25:699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Laursen R, Wehland M, Kopp S, et al. Effects and Role of Multikinase inhibitors in thyroid Cancer. Curr Pharm Des. 2016;22:5915–26.

    Article  CAS  PubMed  Google Scholar 

  73. Wirth LJ, Brose MS, Elisei R et al. LIBRETTO-531: a phase III study of selpercatinib in multikinase inhibitor-naive RET-mutant medullary thyroid cancer. Future Oncol 2022.

  74. Kim J, Bradford D, Larkins E, et al. FDA approval Summary: Pralsetinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions. Clin Cancer Res. 2021;27:5452–6.

    Article  CAS  PubMed  Google Scholar 

  75. Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021;9:491–501.

    Article  CAS  PubMed  Google Scholar 

  76. Chakravarty D, Johnson A, Sklar J, et al. Somatic genomic testing in patients with metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol. 2022;40:1231–58.

    Article  CAS  PubMed  Google Scholar 

  77. Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21:531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Waguespack SG, Drilon A, Lin JJ, et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol. 2022;186:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21:271–82.

    Article  CAS  PubMed  Google Scholar 

  80. Busaidy NL, Konda B, Wei L, et al. Dabrafenib Versus Dabrafenib + Trametinib in BRAF-Mutated Radioactive Iodine Refractory differentiated thyroid Cancer: results of a Randomized, phase 2, open-label Multicenter Trial. Thyroid. 2022;32:1184–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brose MS, Cabanillas ME, Cohen EE, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alvarez-Gomez RM, De la Fuente-Hernandez MA, Herrera-Montalvo L, Hidalgo-Miranda A. Challenges of diagnostic genomics in Latin America. Curr Opin Genet Dev. 2021;66:101–9.

    Article  CAS  PubMed  Google Scholar 

  83. Araujo LH. Adopting Molecular Testing for Solid Tumors in Latin America: Challenges and Opportunities. Volume 3. RAS Oncology & Therapy; 2022.

  84. Pitoia F, Smulever A, Jerkovich F. Letter to the Editor: “Foundation One Genomic Interrogation of Thyroid Cancers in Patients with Metastatic Disease Requiring Systemic Therapy”. J Clin Endocrinol Metab 2020; 105.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search and data analysis was made by all authors. The first draft of the manuscript was written by Fabian Pitoia and all authors commented on previous versions of the manuscript. Rafael Selbach Scheffel and Ana Luisa Maia critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Luiza Maia.

Ethics declarations

Conflict of interest

- Ana Luiza Maia: principal investigator in multicenter studies for Sanofi-Genzyme, Exelixis and Lilly.

- Fabian Pitoia: principal investigator in multicenter studies for Bayer, Exelixis and Novartis. Speaker for Bayer.

- Rafael Selbach Scheffel: subinvestigator in multicenter studies for Sanofi-Genzyme, Exelixis and Lilly.

- Ines Califano: subinvestigaton in multicenter studies for Novartis. Speaker for Bayer, Biotoscana/Knigtt, Raffo and Roche.

- Alicia Gauna: no conflicts of interest.

- Hernán Tala: no conflicts of interest.

- Fernanda Vaisman: principal investigator in multicenter studies for AstraZenca, Bayer, Lilly, Exelixis and Roche. Speaker for Abbott Laboratórios, Sanofi-Genzyme, Merck, Knight, Lilly, Ipsen, Onkos and Bayer. Advisory Board for Sanofi-Genzyme, Knight, Ipsen, Merck, Lilly and Bayer.

- Alejandro Roman Gonzalez: principal investigator in multicenter studies for Novartis, Sanofi and Amgen. Speaker for Biotoscana, Ultragenyx, Bayer, Ipsen, Amgen, Valentech and Recordati. Research fees for research from Corcept.

- Ana Oliveira Hoff: research support from Exelixis, Lilly and Novartis. Consulting (advisory board) for Exelixis, Knight, Eli Lilly and Bayer. Consulting (steering committee) for Eli Lilly. Speaker for Bayer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitoia, F., Scheffel, R.S., Califano, I. et al. Management of radioiodine refractory differentiated thyroid cancer: the Latin American perspective. Rev Endocr Metab Disord 25, 109–121 (2024). https://doi.org/10.1007/s11154-023-09818-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09818-0

Keywords

Navigation