Skip to main content
Log in

Adrenal insufficiency in pregnancy: Physiology, diagnosis, management and areas for future research

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Adrenal insufficiency requires prompt diagnosis in pregnancy, as untreated, it can lead to serious consequences such as adrenal crisis, intrauterine growth restriction and even foetal demise. Similarities between symptoms of adrenal insufficiency and those of normal pregnancy can complicate diagnosis. Previously diagnosed adrenal insufficiency needs monitoring and, often, adjustment of adrenal hormone replacement. Many physiological changes occur to the hypothalamic–pituitary–adrenal (HPA) axis during pregnancy, often making diagnosis and management of adrenal insufficiency challenging. Pregnancy is a state of sustained physiologic hypercortisolaemia; there are multiple contributing factors including high plasma concentrations of placental derived corticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH) and increased adrenal responsiveness to ACTH. Despite increased circulating concentrations of CRH-binding protein (CRH-BP) and the major cortisol binding protein, corticosteroid binding globulin (CBG), free concentrations of both hormones are increased progressively in pregnancy. In addition, pregnancy leads to activation of the renin–angiotensin–aldosterone system. Most adrenocortical hormone diagnostic thresholds are not applicable or validated in pregnancy. The management of adrenal insufficiency also needs to reflect the physiologic changes of pregnancy, often requiring increased doses of glucocorticoid and at times mineralocorticoid replacement, especially in the last trimester. In this review, we describe pregnancy induced changes in adrenal function, the diagnosis and management of adrenal insufficiency in pregnancy and areas requiring further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

AD:

Addison’s disease

AI:

Adrenal insufficiency

APS:

Autoimmune polyendocrine syndrome

CAH:

Congenital adrenal hyperplasia

CBG:

Corticosteroid binding globulin

CRH:

Corticotropin releasing hormone

CRH-BP:

Corticotropin releasing hormone binding protein

HPA :

Hypothalamic–pituitary–adrenal

NCCAH :

Non-classic congenital adrenal hyperplasia

pCRH:

Placental corticotropin releasing hormone

PNMT:

Phenylethanolamine N-methyltransferase

PRA:

Plasma renin activity

RAAS:

Renin-angiotensin-aldosterone system

11β-HSD1:

11 Beta hydroxysteroid dehydrogenase type 1

11β-HSD2:

11 Beta hydroxysteroid dehydrogenase type 2

11- DOC:

11 Deoxycorticosterone

References

  1. Kamoun M, Mnif MF, Charfi N, et al. Adrenal diseases during pregnancy: pathophysiology, diagnosis and management strategies. Am J Med Sci. 2014;347(1):64–73. https://doi.org/10.1097/MAJ.0b013e31828aaeee.

    Article  Google Scholar 

  2. Rushworth RL, Torpy DJ. Adrenal Insufficiency in Australia: Is it Possible that the Use of Lower Dose, Short-Acting Glucocorticoids has Increased the Risk of Adrenal Crises? Horm Metab Res. 2015;47(6):427–32. https://doi.org/10.1055/s-0034-1395680.

    Article  CAS  Google Scholar 

  3. Hahner S, Ross RJ, Arlt W, et al. Adrenal insufficiency Nat Rev Dis Primers. 2021;7(1):19. https://doi.org/10.1038/s41572-021-00252-7.

    Article  Google Scholar 

  4. Cohen M. Addison’s disease complicated by toxemia of pregnancy; review of the literature. Arch Intern Med (Chic). 1948;81(6):879–87. https://doi.org/10.1001/archinte.1948.00220240088006.

    Article  CAS  Google Scholar 

  5. Brent F. Addison’s disease and pregnancy. Am J Surg. 1950;79(5):645–52. https://doi.org/10.1016/0002-9610(50)90329-1.

    Article  CAS  Google Scholar 

  6. Margulies SL, Corrigan K, Bathgate S, et al. Addison’s disease in pregnancy: Case report, management, and review of the literature. J Neonatal Perinatal Med. 2020;13(2):275–8. https://doi.org/10.3233/npm-190231.

    Article  Google Scholar 

  7. Schneiderman M, Czuzoj-Shulman N, Spence AR, et al. Maternal and neonatal outcomes of pregnancies in women with Addison's disease: a population-based cohort study on 7.7 million births. BJOG. 2017;124(11):1772–9. https://doi.org/10.1111/1471-0528.14448.

  8. Anand G, Beuschlein F. MANAGEMENT OF ENDOCRINE DISEASE: Fertility, pregnancy and lactation in women with adrenal insufficiency. Eur J Endocrinol. 2018;178(2):R45-r53. https://doi.org/10.1530/eje-17-0975.

    Article  CAS  Google Scholar 

  9. Langlois F, Lim DST, Fleseriu M. Update on adrenal insufficiency: Diagnosis and management in pregnancy. Curr Opin Endocrinol Diabetes Obes. 2017;24(3):184–92. https://doi.org/10.1097/med.0000000000000331.

    Article  CAS  Google Scholar 

  10. Ambrosi B, Barbetta L, Morricone L. Diagnosis and management of Addison’s disease during pregnancy. J Endocrinol Invest. 2003;26(7):698–702. https://doi.org/10.1007/bf03347034.

    Article  CAS  Google Scholar 

  11. Lindsay JR, Nieman LK. The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr Rev. 2005;26(6):775–99. https://doi.org/10.1210/er.2004-0025.

    Article  CAS  Google Scholar 

  12. Gradden C, Lawrence D, Doyle PM, et al. Uses of error: Addison’s disease in pregnancy. Lancet. 2001;357(9263):1197. https://doi.org/10.1016/s0140-6736(05)71786-4.

    Article  CAS  Google Scholar 

  13. Drucker D, Shumak S, Angel A. Schmidt’s syndrome presenting with intrauterine growth retardation and postpartum addisonian crisis. Am J Obstet Gynecol. 1984;149(2):229–30. https://doi.org/10.1016/0002-9378(84)90206-0.

    Article  CAS  Google Scholar 

  14. O’Shaughnessy RW, Hackett KJ. Maternal Addison’s disease and fetal growth retardation. A case report J Reprod Med. 1984;29(10):752–6.

    CAS  Google Scholar 

  15. Bjornsdottir S, Cnattingius S, Brandt L, et al. Addison’s disease in women is a risk factor for an adverse pregnancy outcome. J Clin Endocrinol Metab. 2010;95(12):5249–57. https://doi.org/10.1210/jc.2010-0108.

    Article  CAS  Google Scholar 

  16. Jung C, Ho JT, Torpy DJ, et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J Clin Endocrinol Metab. 2011;96(5):1533–40. https://doi.org/10.1210/jc.2010-2395.

    Article  CAS  Google Scholar 

  17. Magiakou MA, Mastorakos G, Webster E, et al. The hypothalamic-pituitary-adrenal axis and the female reproductive system. Ann N Y Acad Sci. 1997;816:42–56. https://doi.org/10.1111/j.1749-6632.1997.tb52128.x.

    Article  CAS  Google Scholar 

  18. Goland RS, Jozak S, Conwell I. Placental corticotropin-releasing hormone and the hypercortisolism of pregnancy. Am J Obstet Gynecol. 1994;171(5):1287–91. https://doi.org/10.1016/0002-9378(94)90149-x.

    Article  CAS  Google Scholar 

  19. Goland RS, Wardlaw SL, Blum M, et al. Biologically active corticotropin-releasing hormone in maternal and fetal plasma during pregnancy. Am J Obstet Gynecol. 1988;159(4):884–90. https://doi.org/10.1016/s0002-9378(88)80162-5.

    Article  CAS  Google Scholar 

  20. Linton EA, Perkins AV, Woods RJ, et al. Corticotropin releasing hormone-binding protein (CRH-BP): Plasma levels decrease during the third trimester of normal human pregnancy. J Clin Endocrinol Metab. 1993;76(1):260–2. https://doi.org/10.1210/jcem.76.1.8421097.

    Article  CAS  Google Scholar 

  21. McLean M, Bisits A, Davies J, et al. A placental clock controlling the length of human pregnancy. Nat Med. 1995;1(5):460–3. https://doi.org/10.1038/nm0595-460.

    Article  CAS  Google Scholar 

  22. Herrera CL, Bowman ME, McIntire DD, et al. Revisiting the placental clock: Early corticotrophin-releasing hormone rise in recurrent preterm birth. PLoS ONE. 2021;16(9): e0257422. https://doi.org/10.1371/journal.pone.0257422.

    Article  CAS  Google Scholar 

  23. Magiakou MA, Mastorakos G, Rabin D, et al. The maternal hypothalamic-pituitary-adrenal axis in the third trimester of human pregnancy. Clin Endocrinol (Oxf). 1996;44(4):419–28. https://doi.org/10.1046/j.1365-2265.1996.683505.x.

    Article  CAS  Google Scholar 

  24. Demura R, Odagiri E, Yoshimura M, et al. Placental secretion of prolactin, ACTH and immunoreactive beta-endorphin during pregnancy. Acta Endocrinol (Copenh). 1982;100(1):114–9. https://doi.org/10.1530/acta.0.1000114.

    Article  CAS  Google Scholar 

  25. Carr BR, Parker CR Jr, Madden JD, et al. Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am J Obstet Gynecol. 1981;139(4):416–22. https://doi.org/10.1016/0002-9378(81)90318-5.

    Article  CAS  Google Scholar 

  26. Demey-Ponsart E, Foidart JM, Sulon J, et al. Serum CBG, free and total cortisol and circadian patterns of adrenal function in normal pregnancy. J Steroid Biochem. 1982;16(2):165–9. https://doi.org/10.1016/0022-4731(82)90163-7.

    Article  CAS  Google Scholar 

  27. Nolten WE, Lindheimer MD, Oparil S, et al. Desoxycorticosterone in normal pregnancy. I. Sequential studies of the secretory patterns of desoxycorticosterone, aldosterone, and cortisol. Am J Obstet Gynecol. 1978;132(4):414–20.

  28. Suri D, Moran J, Hibbard JU, et al. Assessment of adrenal reserve in pregnancy: Defining the normal response to the adrenocorticotropin stimulation test. J Clin Endocrinol Metab. 2006;91(10):3866–72. https://doi.org/10.1210/jc.2006-1049.

    Article  CAS  Google Scholar 

  29. Ho JT, Lewis JG, O’Loughlin P, et al. Reduced maternal corticosteroid-binding globulin and cortisol levels in pre-eclampsia and gamete recipient pregnancies. Clin Endocrinol (Oxf). 2007;66(6):869–77. https://doi.org/10.1111/j.1365-2265.2007.02826.x.

    Article  CAS  Google Scholar 

  30. Avvakumov GV, Strel’chyonok OA. Evidence for the involvement of the transcortin carbohydrate moiety in the glycoprotein interaction with the plasma membrane of human placental syncytiotrophoblast. Biochim Biophys Acta. 1988;938(1):1–6. https://doi.org/10.1016/0005-2736(88)90115-0.

    Article  CAS  Google Scholar 

  31. Avvakumov GV, Strel’chyonok OA. Properties and serum levels of pregnancy-associated variant of human transcortin. Biochim Biophys Acta. 1987;925(1):11–6. https://doi.org/10.1016/0304-4165(87)90142-5.

    Article  CAS  Google Scholar 

  32. Abrao AL, Leal SC, Falcao DP. Salivary and serum cortisol levels, salivary alpha-amylase and unstimulated whole saliva flow rate in pregnant and non-pregnant. Rev Bras Ginecol Obstet. 2014;36(2):72–8.

    Article  Google Scholar 

  33. Hodyl NA, Stark MJ, Meyer EJ, et al. High binding site occupancy of corticosteroid-binding globulin by progesterone increases fetal free cortisol concentrations. Eur J Obstet Gynecol Reprod Biol. 2020;251:129–35. https://doi.org/10.1016/j.ejogrb.2020.05.034.

    Article  CAS  Google Scholar 

  34. Allolio B, Hoffmann J, Linton EA, et al. Diurnal salivary cortisol patterns during pregnancy and after delivery: Relationship to plasma corticotrophin-releasing-hormone. Clin Endocrinol (Oxf). 1990;33(2):279–89. https://doi.org/10.1111/j.1365-2265.1990.tb00492.x.

    Article  CAS  Google Scholar 

  35. Abou-Samra AB, Pugeat M, Dechaud H, et al. Increased plasma concentration of N-terminal beta-lipotrophin and unbound cortisol during pregnancy. Clin Endocrinol (Oxf). 1984;20(2):221–8. https://doi.org/10.1111/j.1365-2265.1984.tb00077.x.

    Article  CAS  Google Scholar 

  36. Nolten WE, Lindheimer MD, Rueckert PA, et al. Diurnal patterns and regulation of cortisol secretion in pregnancy. J Clin Endocrinol Metab. 1980;51(3):466–72. https://doi.org/10.1210/jcem-51-3-466.

    Article  CAS  Google Scholar 

  37. Odagiri E, Ishiwatari N, Abe Y, et al. Hypercortisolism and the resistance to dexamethasone suppression during gestation. Endocrinol Jpn. 1988;35(5):685–90. https://doi.org/10.1507/endocrj1954.35.685.

    Article  CAS  Google Scholar 

  38. Magiakou MA, Mastorakos G, Rabin D, et al. Hypothalamic corticotropin-releasing hormone suppression during the postpartum period: Implications for the increase in psychiatric manifestations at this time. J Clin Endocrinol Metab. 1996;81(5):1912–7. https://doi.org/10.1210/jcem.81.5.8626857.

    Article  CAS  Google Scholar 

  39. Robinson BG, Emanuel RL, Frim DM, et al. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci U S A. 1988;85(14):5244–8. https://doi.org/10.1073/pnas.85.14.5244.

    Article  CAS  Google Scholar 

  40. Schulte HM, Weisner D, Allolio B. The corticotrophin releasing hormone test in late pregnancy: Lack of adrenocorticotrophin and cortisol response. Clin Endocrinol (Oxf). 1990;33(1):99–106. https://doi.org/10.1111/j.1365-2265.1990.tb00470.x.

    Article  CAS  Google Scholar 

  41. Suda T, Iwashita M, Ushiyama T, et al. Responses to corticotropin-releasing hormone and its bound and free forms in pregnant and nonpregnant women. J Clin Endocrinol Metab. 1989;69(1):38–42. https://doi.org/10.1210/jcem-69-1-38.

    Article  CAS  Google Scholar 

  42. Benediktsson R, Calder AA, Edwards CR, et al. Placental 11 beta-hydroxysteroid dehydrogenase: A key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf). 1997;46(2):161–6. https://doi.org/10.1046/j.1365-2265.1997.1230939.x.

    Article  CAS  Google Scholar 

  43. Yang Q, Wang W, Liu C, et al. Compartmentalized localization of 11β-HSD 1 and 2 at the feto-maternal interface in the first trimester of human pregnancy. Placenta. 2016;46:63–71. https://doi.org/10.1016/j.placenta.2016.08.079.

    Article  CAS  Google Scholar 

  44. Quinkler M, Oelkers W, Diederich S. Clinical implications of glucocorticoid metabolism by 11beta-hydroxysteroid dehydrogenases in target tissues. Eur J Endocrinol. 2001;144(2):87–97. https://doi.org/10.1530/eje.0.1440087.

    Article  CAS  Google Scholar 

  45. Murphy BE. Conversion of cortisol to cortisone by the human uterus and its reversal in pregnancy. J Clin Endocrinol Metab. 1977;44(6):1214–7. https://doi.org/10.1210/jcem-44-6-1214.

    Article  CAS  Google Scholar 

  46. Beitins IZ, Bayard F, Ances IG, et al. The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr Res. 1973;7(5):509–19. https://doi.org/10.1203/00006450-197305000-00004.

    Article  CAS  Google Scholar 

  47. Brue T, Amodru V, Castinetti F. MANAGEMENT OF ENDOCRINE DISEASE: Management of Cushing’s syndrome during pregnancy: Solved and unsolved questions. Eur J Endocrinol. 2018;178(6):R259–66. https://doi.org/10.1530/eje-17-1058.

    Article  CAS  Google Scholar 

  48. Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R245–58. https://doi.org/10.1152/ajpregu.00108.2002.

    Article  CAS  Google Scholar 

  49. Quinkler M, Meyer B, Bumke-Vogt C, et al. Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor. Eur J Endocrinol. 2002;146(6):789–99. https://doi.org/10.1530/eje.0.1460789.

    Article  CAS  Google Scholar 

  50. Wilson M, Morganti AA, Zervoudakis I, et al. Blood pressure, the renin-aldosterone system and sex steroids throughout normal pregnancy. Am J Med. 1980;68(1):97–104. https://doi.org/10.1016/0002-9343(80)90178-3.

    Article  CAS  Google Scholar 

  51. Ehrlich EN. Mineralocorticoids in normal and hypertensive pregnancies. Semin Perinatol. 1978;2(1):61–71.

    CAS  Google Scholar 

  52. Nolten WE, Lindheimer MD, Oparil S, et al. Desoxycorticosterone in normal pregnancy. II. Cortisol-dependent fluctuations in free plasma desoxycorticosterone. Am J Obstet Gynecol. 1979;133(6):644–8. https://doi.org/10.1016/0002-9378(79)90012-7.

  53. Chanson P. Other Pituitary Conditions and Pregnancy. Endocrinol Metab Clin North Am. 2019;48(3):583–603. https://doi.org/10.1016/j.ecl.2019.05.005.

    Article  Google Scholar 

  54. McGoldrick E, Stewart F, Parker R, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020;12(12):Cd004454. https://doi.org/10.1002/14651858.CD004454.pub4.

  55. Battarbee AN, Ros ST, Esplin MS, et al. Optimal timing of antenatal corticosteroid administration and preterm neonatal and early childhood outcomes. Am J Obstet Gynecol MFM. 2020;2(1): 100077. https://doi.org/10.1016/j.ajogmf.2019.100077.

    Article  Google Scholar 

  56. Rushworth RL, Torpy DJ, Falhammar H. Adrenal Crisis. N Engl J Med. 2019;381(9):852–61. https://doi.org/10.1056/NEJMra1807486.

    Article  CAS  Google Scholar 

  57. Bothou C, Anand G, Li D, et al. Current management and outcome of pregnancies in women with adrenal insufficiency: experience from a multicenter survey. J Clin Endocrinol Metab. 2020;105(8). https://doi.org/10.1210/clinem/dgaa266.

  58. Yuen KC, Chong LE, Koch CA. Adrenal insufficiency in pregnancy: Challenging issues in diagnosis and management. Endocrine. 2013;44(2):283–92. https://doi.org/10.1007/s12020-013-9893-2.

    Article  CAS  Google Scholar 

  59. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–89. https://doi.org/10.1210/jc.2015-1710.

    Article  CAS  Google Scholar 

  60. Lebbe M, Arlt W. What is the best diagnostic and therapeutic management strategy for an Addison patient during pregnancy? Clin Endocrinol (Oxf). 2013;78(4):497–502. https://doi.org/10.1111/cen.12097.

    Article  CAS  Google Scholar 

  61. Reisch N. Pregnancy in Congenital Adrenal Hyperplasia. Endocrinol Metab Clin North Am. 2019;48(3):619–41. https://doi.org/10.1016/j.ecl.2019.05.011.

    Article  Google Scholar 

  62. Bensing S, Giordano R, Falorni A. Fertility and pregnancy in women with primary adrenal insufficiency. Endocrine. 2020;70(2):211–7. https://doi.org/10.1007/s12020-020-02343-z.

    Article  CAS  Google Scholar 

  63. Garelli S, Dalla Costa M, Sabbadin C, et al. Autoimmune polyendocrine syndrome type 1: an Italian survey on 158 patients. J Endocrinol Invest. 2021;44(11):2493–510. https://doi.org/10.1007/s40618-021-01585-6.

    Article  CAS  Google Scholar 

  64. Husebye ES, Anderson MS, Kämpe O. Autoimmune Polyendocrine Syndromes. N Engl J Med. 2018;378(12):1132–41. https://doi.org/10.1056/NEJMra1713301.

    Article  CAS  Google Scholar 

  65. Tallis PH, Rushworth RL, Torpy DJ, et al. Adrenal insufficiency due to bilateral adrenal metastases - A systematic review and meta-analysis. Heliyon. 2019;5(5): e01783. https://doi.org/10.1016/j.heliyon.2019.e01783.

    Article  Google Scholar 

  66. Woodmansee WW. Pituitary Disorders in Pregnancy. Neurol Clin. 2019;37(1):63–83. https://doi.org/10.1016/j.ncl.2018.09.009.

    Article  Google Scholar 

  67. Honegger J, Giese S. Acute pituitary disease in pregnancy: how to handle hypophysitis and Sheehan's syndrome. Minerva Endocrinol. 2018;43(4):465–75. https://doi.org/10.23736/s0391-1977.18.02814-6.

  68. Falorni A, Laureti S, Nikoshkov A, et al. 21-hydroxylase autoantibodies in adult patients with endocrine autoimmune diseases are highly specific for Addison’s disease. Belgian Diabetes Registry Clin Exp Immunol. 1997;107(2):341–6. https://doi.org/10.1111/j.1365-2249.1997.262-ce1153.x.

    Article  CAS  Google Scholar 

  69. Vila G, Fleseriu M. Fertility and pregnancy in women with hypopituitarism: A systematic literature review. J Clin Endocrinol Metab. 2020;105(3). https://doi.org/10.1210/clinem/dgz112.

  70. Mercè Fernández-Balsells M, Muthusamy K, Smushkin G, et al. Prenatal dexamethasone use for the prevention of virilization in pregnancies at risk for classical congenital adrenal hyperplasia because of 21-hydroxylase (CYP21A2) deficiency: a systematic review and meta-analyses. Clin Endocrinol (Oxf). 2010;73(4):436–44. https://doi.org/10.1111/j.1365-2265.2010.03826.x.

    Article  CAS  Google Scholar 

  71. Fleseriu M, Hashim IA, Karavitaki N, et al. Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(11):3888–921. https://doi.org/10.1210/jc.2016-2118.

    Article  CAS  Google Scholar 

  72. Sasaki A, Shinkawa O, Yoshinaga K. Placental corticotropin-releasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J Clin Invest. 1989;84(6):1997–2001. https://doi.org/10.1172/JCI114390.

    Article  CAS  Google Scholar 

  73. Sidhu RK, Hawkins DF. Prescribing in pregnancy. Corticosteroids Clin Obstet Gynaecol. 1981;8(2):383–404.

    Article  CAS  Google Scholar 

  74. Walsh SD, Clark FR. Pregnancy in patients on long-term corticosteroid therapy. Scott Med J. 1967;12(9):302–6. https://doi.org/10.1177/003693306701200902.

    Article  CAS  Google Scholar 

  75. Stinson LJ, Stroud LR, Buka SL, et al. Prospective evaluation of associations between prenatal cortisol and adulthood coronary heart disease risk: The New England family study. Psychosom Med. 2015;77(3):237–45. https://doi.org/10.1097/PSY.0000000000000164.

    Article  CAS  Google Scholar 

  76. Braun T, Challis JR, Newnham JP, et al. Early-life glucocorticoid exposure: The hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev. 2013;34(6):885–916. https://doi.org/10.1210/er.2013-1012.

    Article  CAS  Google Scholar 

  77. Reynolds RM. Glucocorticoid excess and the developmental origins of disease: Two decades of testing the hypothesis–2012 Curt Richter Award Winner. Psychoneuroendocrinology. 2013;38(1):1–11. https://doi.org/10.1016/j.psyneuen.2012.08.012.

    Article  CAS  Google Scholar 

  78. Goedhart G, Vrijkotte TG, Roseboom TJ, et al. Maternal cortisol and offspring birthweight: Results from a large prospective cohort study. Psychoneuroendocrinology. 2010;35(5):644–52. https://doi.org/10.1016/j.psyneuen.2009.10.003.

    Article  CAS  Google Scholar 

  79. Entringer S, Buss C, Andersen J, et al. Ecological momentary assessment of maternal cortisol profiles over a multiple-day period predicts the length of human gestation. Psychosom Med. 2011;73(6):469–74. https://doi.org/10.1097/PSY.0b013e31821fbf9a.

    Article  CAS  Google Scholar 

  80. Hohwü L, Henriksen TB, Grønborg TK, et al. Maternal salivary cortisol levels during pregnancy are positively associated with overweight children. Psychoneuroendocrinology. 2015;52:143–52. https://doi.org/10.1016/j.psyneuen.2014.11.006.

    Article  CAS  Google Scholar 

  81. Dalziel SR, Walker NK, Parag V, et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005;365(9474):1856–62. https://doi.org/10.1016/s0140-6736(05)66617-2.

    Article  CAS  Google Scholar 

  82. French NP, Hagan R, Evans SF, et al. Repeated antenatal corticosteroids: Effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol. 2004;190(3):588–95. https://doi.org/10.1016/j.ajog.2003.12.016.

    Article  CAS  Google Scholar 

  83. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: Outcomes. Nat Rev Endocrinol. 2014;10(7):391–402. https://doi.org/10.1038/nrendo.2014.73.

    Article  CAS  Google Scholar 

  84. Huang W, Molitch ME. Pituitary Tumors in Pregnancy. Endocrinol Metab Clin North Am. 2019;48(3):569–81. https://doi.org/10.1016/j.ecl.2019.05.004.

    Article  Google Scholar 

  85. Ost L, Wettrell G, Björkhem I, et al. Prednisolone excretion in human milk. J Pediatr. 1985;106(6):1008–11. https://doi.org/10.1016/s0022-3476(85)80259-6.

    Article  CAS  Google Scholar 

  86. Ryu RJ, Easterling TR, Caritis SN, et al. Prednisone Pharmacokinetics During Pregnancy and Lactation. J Clin Pharmacol. 2018;58(9):1223–32. https://doi.org/10.1002/jcph.1122.

    Article  CAS  Google Scholar 

  87. Scott EM, McGarrigle HH, Lachelin GC. The increase in plasma and saliva cortisol levels in pregnancy is not due to the increase in corticosteroid-binding globulin levels. J Clin Endocrinol Metab. 1990;71(3):639–44. https://doi.org/10.1210/jcem-71-3-639.

    Article  CAS  Google Scholar 

  88. Dörr HG, Heller A, Versmold HT, et al. Longitudinal study of progestins, mineralocorticoids, and glucocorticoids throughout human pregnancy. J Clin Endocrinol Metab. 1989;68(5):863–8. https://doi.org/10.1210/jcem-68-5-863.

    Article  Google Scholar 

  89. Walker BR, Williamson PM, Brown MA, et al. 11 beta-Hydroxysteroid dehydrogenase and its inhibitors in hypertensive pregnancy. Hypertension. 1995;25(4 Pt 1):626–30. https://doi.org/10.1161/01.hyp.25.4.626.

    Article  CAS  Google Scholar 

  90. Laatikainen T, Virtanen T, Kaaja R, et al. Corticotropin-releasing hormone in maternal and cord plasma in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 1991;39(1):19–24. https://doi.org/10.1016/0028-2243(91)90136-9.

    Article  CAS  Google Scholar 

  91. Kosicka K, Siemiątkowska A, Szpera-Goździewicz A, et al. Increased cortisol metabolism in women with pregnancy-related hypertension. Endocrine. 2018;61(1):125–33. https://doi.org/10.1007/s12020-018-1586-4.

    Article  CAS  Google Scholar 

  92. Kosicka K, Siemiątkowska A, Krzyścin M, et al. Glucocorticoid metabolism in hypertensive disorders of pregnancy: Analysis of plasma and urinary cortisol and cortisone. PLoS ONE. 2015;10(12): e0144343. https://doi.org/10.1371/journal.pone.0144343.

    Article  CAS  Google Scholar 

  93. Benassayag C, Souski I, Mignot TM, et al. Corticosteroid-binding globulin status at the fetomaternal interface during human term pregnancy. Biol Reprod. 2001;64(3):812–21. https://doi.org/10.1095/biolreprod64.3.812.

    Article  CAS  Google Scholar 

  94. Mitchell E, Torpy DJ, Bagley CJ. Pregnancy-associated corticosteroid-binding globulin: High resolution separation of glycan isoforms. Horm Metab Res. 2004;36(6):357–9. https://doi.org/10.1055/s-2004-814580.

    Article  CAS  Google Scholar 

  95. Strel’chyonok OA, Avvakumov GV. Interaction of human CBG with cell membranes. J Steroid Biochem Mol Biol. 1991;40(4–6):795–803. https://doi.org/10.1016/0960-0760(91)90305-o.

    Article  CAS  Google Scholar 

  96. Bornstein SR, Breidert M, Ehrhart-Bornstein M, et al. Plasma catecholamines in patients with Addison’s disease. Clin Endocrinol (Oxf). 1995;42(2):215–8. https://doi.org/10.1111/j.1365-2265.1995.tb01866.x.

    Article  CAS  Google Scholar 

  97. Rudman D, Moffitt SD, Fernhoff PM, et al. Epinephrine deficiency in hypocorticotropic hypopituitary children. J Clin Endocrinol Metab. 1981;53(4):722–9. https://doi.org/10.1210/jcem-53-4-722.

    Article  CAS  Google Scholar 

  98. Morita S, Otsuki M, Izumi M, et al. Reduced epinephrine reserve in response to insulin-induced hypoglycemia in patients with pituitary adenoma. Eur J Endocrinol. 2007;157(3):265–70. https://doi.org/10.1530/eje-07-0176.

    Article  CAS  Google Scholar 

  99. Merke DP, Chrousos GP, Eisenhofer G, et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med. 2000;343(19):1362–8. https://doi.org/10.1056/nejm200011093431903.

    Article  CAS  Google Scholar 

  100. Tutunculer F, Saka N, Arkaya SC, et al. Evaluation of adrenomedullary function in patients with congenital adrenal hyperplasia. Horm Res. 2009;72(6):331–6. https://doi.org/10.1159/000249160.

    Article  CAS  Google Scholar 

  101. Verma S, Green-Golan L, VanRyzin C, et al. Adrenomedullary function in patients with nonclassic congenital adrenal hyperplasia. Horm Metab Res. 2010;42(8):607–12. https://doi.org/10.1055/s-0030-1253385.

    Article  CAS  Google Scholar 

  102. Goldstein DS. Adrenaline and Noradrenaline, In: Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd;2010.

  103. Kim MS, Ryabets-Lienhard A, Bali B, et al. Decreased adrenomedullary function in infants with classical congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2014;99(8):E1597–601. https://doi.org/10.1210/jc.2014-1274.

    Article  CAS  Google Scholar 

  104. Charmandari E, Weise M, Bornstein SR, et al. Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: Potential clinical implications. J Clin Endocrinol Metab. 2002;87(5):2114–20. https://doi.org/10.1210/jcem.87.5.8456.

    Article  CAS  Google Scholar 

  105. Zuckerman-Levin N, Tiosano D, Eisenhofer G, et al. The importance of adrenocortical glucocorticoids for adrenomedullary and physiological response to stress: A study in isolated glucocorticoid deficiency. J Clin Endocrinol Metab. 2001;86(12):5920–4. https://doi.org/10.1210/jcem.86.12.8106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica H. Lee or David J. Torpy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise, in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Torpy, D.J. Adrenal insufficiency in pregnancy: Physiology, diagnosis, management and areas for future research. Rev Endocr Metab Disord 24, 57–69 (2023). https://doi.org/10.1007/s11154-022-09745-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09745-6

Keywords

Navigation