Skip to main content

Advertisement

Log in

Dynamic changes of views on the brain changes of Cushing’s syndrome using different computer-assisted tool

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Cushing’s syndrome (CS) provides a unique model for assessing the neurotoxic effect of chronic hypercortisolism on human brains. With the ongoing development of different computer-assisted tools, four research stages emerged, each with its own pearls and pitfalls. This review summarizes current knowledge and describes the dynamic changes of views on the brain changes of CS, especially in the current era of the rapid development of artificial intelligence and big data. The adverse effects of GC on brain are proven to be on structural, functional and cellular levels at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feelders RA, Newell-Price J, Pivonello R, Nieman LK, Hofland LJ, Lacroix A. Advances in the medical treatment of Cushing’s syndrome. Lancet Diabetes Endocrinol. 2019;7(4):300–12. https://doi.org/10.1016/S2213-8587(18)30155-4.

    Article  PubMed  Google Scholar 

  2. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 2016;4(7):611–29. https://doi.org/10.1016/S2213-8587(16)00086-3.

    Article  CAS  PubMed  Google Scholar 

  3. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386(9996):913–27. https://doi.org/10.1016/S0140-6736(14)61375-1.

    Article  CAS  PubMed  Google Scholar 

  4. Lonser RR, Nieman L, Oldfield EH. Cushing’s disease: pathobiology, diagnosis, and management. J Neurosurg. 2017;126(2):404–17. https://doi.org/10.3171/2016.1.JNS152119.

    Article  PubMed  Google Scholar 

  5. Carroll TB, Findling JW. The diagnosis of Cushing’s syndrome. Rev Endocr Metab Disord. 2010;11(2):147–53. https://doi.org/10.1007/s11154-010-9143-3.

    Article  PubMed  Google Scholar 

  6. Pivonello R, Simeoli C, De Martino MC, Cozzolino A, De Leo M, Iacuaniello D, et al. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015;9:129. https://doi.org/10.3389/fnins.2015.00129.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sonino N, Fava GA. Psychiatric disorders associated with Cushing’s syndrome. Epidemiology, pathophysiology and treatment. CNS Drugs. 2001;15(5):361–73. https://doi.org/10.2165/00023210-200115050-00003.

    Article  CAS  PubMed  Google Scholar 

  8. Andela CD, van Haalen FM, Ragnarsson O, Papakokkinou E, Johannsson G, Santos A, et al. MECHANISMS IN ENDOCRINOLOGY: Cushing's syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur J Endocrinol. 2015;173(1):R1–14. https://doi.org/10.1530/EJE-14-1101.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng H, Gao L, Hou B, Feng F, Guo X, Wang Z, et al. Reversibility of cerebral blood flow in patients with Cushing’s disease after surgery treatment. Metabolism. 2019;104:154050. https://doi.org/10.1016/j.metabol.2019.154050.

  10. Hou B, Gao L, Shi L, Luo Y, Guo X, Young GS, et al. Reversibility of impaired brain structures after transsphenoidal surgery in Cushing’s disease: a longitudinal study based on an artificial intelligence-assisted tool. J Neurosurg. 2020:1-10. https://doi.org/10.3171/2019.10.JNS191400.

  11. de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joels M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol. 2018;49:124–45. https://doi.org/10.1016/j.yfrne.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  12. Forget H, Lacroix A, Somma M, Cohen H. Cognitive decline in patients with Cushing’s syndrome. J Int Neuropsychol Soc. 2000;6(1):20–9. https://doi.org/10.1017/s1355617700611037.

    Article  CAS  PubMed  Google Scholar 

  13. AbdelMannan D, Selman WR, Arafah BM. Peri-operative management of Cushing’s disease. Rev Endocr Metab Disord. 2010;11(2):127–34. https://doi.org/10.1007/s11154-010-9140-6.

    Article  PubMed  Google Scholar 

  14. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31. https://doi.org/10.1210/jc.2015-1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng M, Liu Z, Liu X, Bao X, Yao Y, Deng K, et al. Diagnosis and outcomes of 341 patients with Cushing’s disease following transsphenoid surgery: a single-center experience. World Neurosurg. 2018;109:e75–80. https://doi.org/10.1016/j.wneu.2017.09.105.

    Article  PubMed  Google Scholar 

  16. Resmini E, Santos A, Gomez-Anson B, Vives Y, Pires P, Crespo I, et al. Verbal and visual memory performance and hippocampal volumes, measured by 3-tesla magnetic resonance imaging, in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(2):663–71. https://doi.org/10.1210/jc.2011-2231.

    Article  CAS  PubMed  Google Scholar 

  17. Ragnarsson O, Berglund P, Eder DN, Johannsson G. Long-term cognitive impairments and attentional deficits in patients with Cushing’s disease and cortisol-producing adrenal adenoma in remission. J Clin Endocrinol Metab. 2012;97(9):E1640–8. https://doi.org/10.1210/jc.2012-1945.

    Article  CAS  PubMed  Google Scholar 

  18. Tiemensma J, Kokshoorn NE, Biermasz NR, Keijser BJ, Wassenaar MJ, Middelkoop HA, et al. Subtle cognitive impairments in patients with long-term cure of Cushing’s disease. J Clin Endocrinol Metab. 2010;95(6):2699–714. https://doi.org/10.1210/jc.2009-2032.

    Article  CAS  PubMed  Google Scholar 

  19. van Aken MO, Pereira AM, Biermasz NR, van Thiel SW, Hoftijzer HC, Smit JW, et al. Quality of life in patients after long-term biochemical cure of Cushing’s disease. J Clin Endocrinol Metab. 2005;90(6):3279–86. https://doi.org/10.1210/jc.2004-1375.

    Article  CAS  PubMed  Google Scholar 

  20. Stomby A, Salami A, Dahlqvist P, Evang JA, Ryberg M, Bollerslev J, et al. Elevated resting-state connectivity in the medial temporal lobe and the prefrontal cortex among patients with Cushing’s syndrome in remission. Eur J Endocrinol. 2019;180(5):329–38. https://doi.org/10.1530/EJE-19-0028.

    Article  CAS  PubMed  Google Scholar 

  21. van der Werff SJ, Pannekoek JN, Andela CD, Meijer OC, van Buchem MA, Rombouts SA, et al. Resting-state functional connectivity in patients with long-term remission of Cushing’s disease. Neuropsychopharmacology. 2015;40(8):1888–98. https://doi.org/10.1038/npp.2015.38.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Steward T, Miranda-Olivos R, Soriano-Mas C, Fernandez-Aranda F. Neuroendocrinological mechanisms underlying impulsive and compulsive behaviors in obesity: a narrative review of fMRI studies. Rev Endocr Metab Disord. 2019;20(3):263–72. https://doi.org/10.1007/s11154-019-09515-x.

    Article  PubMed  Google Scholar 

  23. van der Werff SJ, Andela CD, Nienke Pannekoek J, Meijer OC, van Buchem MA, Rombouts SA, et al. Widespread reductions of white matter integrity in patients with long-term remission of Cushing’s disease. NeuroImage Clin. 2014;4:659–67. https://doi.org/10.1016/j.nicl.2014.01.017.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang H, Ren J, He NY, Liu C, Sun YH, Jian FF, et al. Volumetric magnetic resonance imaging analysis in patients with short-term remission of Cushing’s disease. Clin Endocrinol. 2017;87(4):367–74. https://doi.org/10.1111/cen.13381.

    Article  CAS  Google Scholar 

  25. Gordan GS, Elliott HW. The action of diethylstilbestrol and some steroids on the respiration of rat brain homogenates. Endocrinology. 1947;41(6):517. https://doi.org/10.1210/endo-41-6-517.

    Article  CAS  PubMed  Google Scholar 

  26. Woodbury DM, Emmett JW, Hinckley GV, Jackson NR, Newton JD, Bateman JH, et al. Antagonism of adrenocortical extract and cortisone to desoxycorticosterone; brain excitability in adrenalectomized rats. Proc Soc Exp Biol Med. 1951;76(1):65–8. https://doi.org/10.3181/00379727-76-18389.

    Article  CAS  PubMed  Google Scholar 

  27. Woodbury DM, Sayers G. Effect of adrenocorticotrophic hormone cortisone and desoxycorticosterone on brain excitability. Proc Soc Exp Biol Med. 1950;75(2):398–403. https://doi.org/10.3181/00379727-75-18211.

    Article  CAS  PubMed  Google Scholar 

  28. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19(3):269–301. https://doi.org/10.1210/edrv.19.3.0331.

    Article  PubMed  Google Scholar 

  29. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897–902.

    Article  CAS  Google Scholar 

  30. Schubert MI, Kalisch R, Sotiropoulos I, Catania C, Sousa N, Almeida OF, et al. Effects of altered corticosteroid milieu on rat hippocampal neurochemistry and structure--an in vivo magnetic resonance spectroscopy and imaging study. J Psychiatr Res. 2008;42(11):902–12. https://doi.org/10.1016/j.jpsychires.2007.10.003.

    Article  PubMed  Google Scholar 

  31. Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OF, et al. Corticosteroid status influences the volume of the rat cingulate cortex - a magnetic resonance imaging study. J Psychiatr Res. 2005;39(5):451–60. https://doi.org/10.1016/j.jpsychires.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  32. Trethowan WH, Cobb S. Neuropsychiatric aspects of Cushing’s syndrome. AMA Arch Neurol Psychiatry. 1952;67(3):283–309. https://doi.org/10.1001/archneurpsyc.1952.02320150016002.

    Article  CAS  PubMed  Google Scholar 

  33. Momose KJ, Kjellberg RN, Kliman B. High incidence of cortical atrophy of the cerebral and cerebellar hemispheres in Cushing’s disease. Radiology. 1971;99(2):341–8. https://doi.org/10.1148/99.2.341.

    Article  CAS  PubMed  Google Scholar 

  34. Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry. 1992;32(9):756–65. https://doi.org/10.1016/0006-3223(92)90079-f.

    Article  CAS  PubMed  Google Scholar 

  35. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry. 1999;46(12):1595–602. https://doi.org/10.1016/s0006-3223(99)00203-6.

    Article  CAS  PubMed  Google Scholar 

  36. Starkman MN, Giordani B, Gebarski SS, Schteingart DE. Improvement in mood and ideation associated with increase in right caudate volume. J Affect Disord. 2007;101(1–3):139–47. https://doi.org/10.1016/j.jad.2006.11.007.

    Article  PubMed  Google Scholar 

  37. Toffanin T, Nifosi F, Follador H, Passamani A, Zonta F, Ferri G, et al. Volumetric MRI analysis of hippocampal subregions in Cushing’s disease: a model for glucocorticoid neural modulation.Eur Psychiatry. 2011;26(1):64–7. https://doi.org/10.1016/j.eurpsy.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  38. Bourdeau I, Bard C, Noel B, Leclerc I, Cordeau MP, Belair M, et al. Loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metab. 2002;87(5):1949–54. https://doi.org/10.1210/jcem.87.5.8493.

    Article  CAS  PubMed  Google Scholar 

  39. Hook JN, Giordani B, Schteingart DE, Guire K, Giles J, Ryan K, et al. Patterns of cognitive change over time and relationship to age following successful treatment of Cushing’s disease. J Int Neuropsychol Soc. 2007;13(1):21–9. https://doi.org/10.1017/S1355617707070051.

    Article  PubMed  Google Scholar 

  40. Starkman MN, Giordani B, Gebarski SS, Schteingart DE. Improvement in learning associated with increase in hippocampal formation volume. Biol Psychiatry. 2003;53(3):233–8. https://doi.org/10.1016/s0006-3223(02)01750-x.

    Article  PubMed  Google Scholar 

  41. Khiat A, Bard C, Lacroix A, Rousseau J, Boulanger Y. Brain metabolic alterations in Cushing’s syndrome as monitored by proton magnetic resonance spectroscopy. NMR Biomed. 1999;12(6):357–63. https://doi.org/10.1002/(sici)1099-1492(199910)12:6<357::aid-nbm584>3.0.co;2-u.

  42. Khiat A, Bard C, Lacroix A, Boulanger Y. Recovery of the brain choline level in treated Cushing’s patients as monitored by proton magnetic resonance spectroscopy. Brain Res. 2000;862(1–2):301–7. https://doi.org/10.1016/s0006-8993(00)02147-8.

    Article  CAS  PubMed  Google Scholar 

  43. Simmons NE, Do HM, Lipper MH, Laws ER Jr. Cerebral atrophy in Cushing’s disease. Surg Neurol. 2000;53(1):72–6. https://doi.org/10.1016/s0090-3019(99)00197-4.

    Article  CAS  PubMed  Google Scholar 

  44. Merke DP, Giedd JN, Keil MF, Mehlinger SL, Wiggs EA, Holzer S, et al. Children experience cognitive decline despite reversal of brain atrophy one year after resolution of Cushing syndrome. J Clin Endocrinol Metab. 2005;90(5):2531–6. https://doi.org/10.1210/jc.2004-2488.

    Article  CAS  PubMed  Google Scholar 

  45. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. NeuroImage. 2000;11(6 Pt 1):805–21. https://doi.org/10.1006/nimg.2000.0582.

    Article  CAS  PubMed  Google Scholar 

  46. Andela CD, van der Werff SJ, Pannekoek JN, van den Berg SM, Meijer OC, van Buchem MA, et al. Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case-control study. Eur J Endocrinol. 2013;169(6):811–9. https://doi.org/10.1530/EJE-13-0471.

    Article  CAS  PubMed  Google Scholar 

  47. Burkhardt T, Ludecke D, Spies L, Wittmann L, Westphal M, Flitsch J. Hippocampal and cerebellar atrophy in patients with Cushing’s disease. Neurosurg Focus. 2015;39(5):E5. https://doi.org/10.3171/2015.8.FOCUS15324.

    Article  PubMed  Google Scholar 

  48. Jiang H, He NY, Sun YH, Jian FF, Bian LG, Shen JK, et al. Altered gray and white matter microstructure in Cushing’s disease: a diffusional kurtosis imaging study. Brain Res. 1665;2017:80–7. https://doi.org/10.1016/j.brainres.2017.04.007.

    Article  CAS  Google Scholar 

  49. Josephs KA, Dickson DW, Tosakulwong N, Weigand SD, Murray ME, Petrucelli L, et al. Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer’s disease: a longitudinal retrospective study. Lancet Neurol. 2017;16(11):917–24. https://doi.org/10.1016/S1474-4422(17)30284-3.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Resmini E, Santos A, Gomez-Anson B, Lopez-Mourelo O, Pires P, Vives-Gilabert Y, et al. Hippocampal dysfunction in cured Cushing’s syndrome patients, detected by (1) H-MR-spectroscopy. Clin Endocrinol. 2013;79(5):700–7. https://doi.org/10.1111/cen.12224.

    Article  CAS  Google Scholar 

  51. Santos A, Resmini E, Crespo I, Pires P, Vives-Gilabert Y, Granell E, et al. Small cerebellar cortex volume in patients with active Cushing’s syndrome. Eur J Endocrinol. 2014;171(4):461–9. https://doi.org/10.1530/EJE-14-0371.

    Article  CAS  PubMed  Google Scholar 

  52. Crespo I, Esther GM, Santos A, Valassi E, Yolanda VG, De Juan-Delago M, et al. Impaired decision-making and selective cortical frontal thinning in Cushing’s syndrome. Clin Endocrinol. 2014;81(6):826–33. https://doi.org/10.1111/cen.12564.

    Article  Google Scholar 

  53. Santos A, Granell E, Gomez-Anson B, Crespo I, Pires P, Vives-Gilabert Y, et al. Depression and anxiety scores are associated with amygdala volume in Cushing’s syndrome: preliminary study. Biomed Res Int. 2017;2017:2061935. https://doi.org/10.1155/2017/2061935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crespo I, Santos A, Gomez-Anson B, Lopez-Mourelo O, Pires P, Vives-Gilabert Y, et al. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing’s syndrome. Endocrine. 2016;53(3):848–56. https://doi.org/10.1007/s12020-016-0963-0.

    Article  CAS  PubMed  Google Scholar 

  55. Abrigo J, Shi L, Luo Y, Chen Q, Chu WCW, Mok VCT, et al. Standardization of hippocampus volumetry using automated brain structure volumetry tool for an initial Alzheimer’s disease imaging biomarker. Acta Radiol. 2019;60(6):769–76. https://doi.org/10.1177/0284185118795327.

    Article  PubMed  Google Scholar 

  56. Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg. 2016;137(5):890e–7e. https://doi.org/10.1097/PRS.0000000000002088.

    Article  CAS  PubMed  Google Scholar 

  57. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285–98. https://doi.org/10.1109/TMI.2016.2528162.

    Article  PubMed  Google Scholar 

  58. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    Article  CAS  Google Scholar 

  59. Wang C, Zhao L, Luo Y, Liu J, Miao P, Wei S, et al. Structural covariance in subcortical stroke patients measured by automated MRI-based volumetry. NeuroImage Clin. 2019;22:101682. https://doi.org/10.1016/j.nicl.2019.101682.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Frisoni GB, Jack CR Jr, Bocchetta M, Bauer C, Frederiksen KS, Liu Y, et al. The EADC-ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity.Alzheimers Dement. 2015;11(2):111–25. https://doi.org/10.1016/j.jalz.2014.05.1756.

    Article  PubMed  Google Scholar 

  61. Zhao W, Luo Y, Zhao L, Mok V, Su L, Yin C, et al. Automated brain MRI Volumetry differentiates early stages of Alzheimer’s disease from normal aging. J Geriatr Psychiatry Neurol. 2019;32(6):354–64. https://doi.org/10.1177/0891988719862637.

    Article  PubMed  Google Scholar 

  62. Maheu FS, Mazzone L, Merke DP, Keil MF, Stratakis CA, Pine DS, et al. Altered amygdala and hippocampus function in adolescents with hypercortisolemia: a functional magnetic resonance imaging study of Cushing syndrome. Dev Psychopathol. 2008;20(4):1177–89. https://doi.org/10.1017/S0954579408000564.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Langenecker SA, Weisenbach SL, Giordani B, Briceno EM, Guidotti Breting LM, Schallmo MP, et al. Impact of chronic hypercortisolemia on affective processing. Neuropharmacology. 2012;62(1):217–25. https://doi.org/10.1016/j.neuropharm.2011.07.006.

    Article  CAS  PubMed  Google Scholar 

  64. Bas-Hoogendam JM, Andela CD, van der Werff SJ, Pannekoek JN, van Steenbergen H, Meijer OC, et al. Altered neural processing of emotional faces in remitted Cushing’s disease. Psychoneuroendocrinology. 2015;59:134–46. https://doi.org/10.1016/j.psyneuen.2015.05.001.

    Article  PubMed  Google Scholar 

  65. Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res. 2011;223(2):403–10. https://doi.org/10.1016/j.bbr.2011.04.025.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain : a journal of neurology. 2014;137(Pt 1):12–32. https://doi.org/10.1093/brain/awt162.

    Article  Google Scholar 

  67. Khalsa S, Mayhew SD, Chechlacz M, Bagary M, Bagshaw AP. The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships. NeuroImage. 2014;102(Pt 1):118–27. https://doi.org/10.1016/j.neuroimage.2013.12.022.

    Article  PubMed  Google Scholar 

  68. van den Heuvel M, Mandl R, Luigjes J, Hulshoff PH. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci. 2008;28(43):10844–51. https://doi.org/10.1523/JNEUROSCI.2964-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ragnarsson O, Stomby A, Dahlqvist P, Evang JA, Ryberg M, Olsson T, et al. Decreased prefrontal functional brain response during memory testing in women with Cushing’s syndrome in remission. Psychoneuroendocrinology. 2017;82:117–25. https://doi.org/10.1016/j.psyneuen.2017.05.010.

    Article  PubMed  Google Scholar 

  70. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A. 2010;107(10):4734–9. https://doi.org/10.1073/pnas.0911855107.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41. https://doi.org/10.1002/mrm.1910340409.

    Article  CAS  PubMed  Google Scholar 

  72. Jiang H, He NY, Sun YH, Jian FF, Bian LG, Shen JK, et al. Altered spontaneous brain activity in Cushing’s disease: a resting-state functional MRI study. Clin Endocrinol. 2017;86(3):367–76. https://doi.org/10.1111/cen.13277.

    Article  CAS  Google Scholar 

  73. Wang X, Zhou T, Wang P, Zhang L, Feng S, Meng X, et al. Dysregulation of resting-state functional connectivity in patients with Cushing’s disease. Neuroradiology. 2019;61(8):911–20. https://doi.org/10.1007/s00234-019-02223-y.

    Article  PubMed  Google Scholar 

  74. Johansen-Berg H, Rushworth MF. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci. 2009;32:75–94. https://doi.org/10.1146/annurev.neuro.051508.135735.

    Article  CAS  PubMed  Google Scholar 

  75. Pires P, Santos A, Vives-Gilabert Y, Webb SM, Sainz-Ruiz A, Resmini E, et al. White matter alterations in the brains of patients with active, remitted, and cured Cushing syndrome: a DTI study. AJNR Am J Neuroradiol. 2015;36(6):1043–8. https://doi.org/10.3174/ajnr.A4322.

    Article  CAS  PubMed  Google Scholar 

  76. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29. https://doi.org/10.1016/j.nurt.2007.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sorrells SF, Sapolsky RM. An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun. 2007;21(3):259–72. https://doi.org/10.1016/j.bbi.2006.11.006.

    Article  CAS  PubMed  Google Scholar 

  78. Liu S, Wang Y, Xu K, Ping F, Li F, Wang R, et al. Voxel-based comparison of brain glucose metabolism between patients with Cushing’s disease and healthy subjects. NeuroImage Clin. 2018;17:354–8. https://doi.org/10.1016/j.nicl.2017.10.038.

    Article  PubMed  Google Scholar 

  79. Liu S, Wang Y, Xu K, Ping F, Wang R, Li F, et al. Brain glucose metabolism is associated with hormone level in Cushing’s disease: a voxel-based study using FDG-PET. NeuroImage Clin. 2016;12:415–9. https://doi.org/10.1016/j.nicl.2016.08.018.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. https://doi.org/10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by China Postdoctoral Science Foundation (2019M650567), and National Key Research and Development Program of China (2018YFC2002304 and 2018YFC2002300, Ministry of Science and Technology of the People’s Republic of China). The funders had no role in the data collection or analysis, writing of the report, or decision to publish.

Funding

This study was supported by China Postdoctoral Science Foundation (2019M650567), and National Key Research and Development Program of China (2018YFC2002304 and 2018YFC2002300, Ministry of Science and Technology of the People’s Republic of China). The funders had no role in the data collection or analysis, writing of the report, or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

Lu Gao and Bing Xing had the idea for the article. Zihao Wang and Xiaopeng Guo performed the literature search. Lu Gao, Lu Liu and Yishan Luo drafted the manuscript. Lin Shi, Yishan Luo and Lu Liu prepared the figures. Lin Shi and Bing Xing did critical revision and editing of the work.

Corresponding authors

Correspondence to Lu Gao or Bing Xing.

Ethics declarations

Conflict of interest

Lin Shi is the director of BrainNow Medical Technology Limited. Yishan Luo is an employee of BrainNow Medical Technology Limited. All other authors report no financial relationships with commercial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lu Gao and Lu Liu are Joint first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Liu, L., Shi, L. et al. Dynamic changes of views on the brain changes of Cushing’s syndrome using different computer-assisted tool. Rev Endocr Metab Disord 21, 185–200 (2020). https://doi.org/10.1007/s11154-020-09540-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09540-1

Keywords

Navigation