Skip to main content
Log in

High catalytic activity of gold nanoparticle-templated, tyrosine-rich peptide self-assemblies for 3,3′,5,5′-tetramethylbenzidine oxidation in the absence of hydrogen peroxide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, gold nanoparticle-templated, tyrosine-rich peptide (YC7@AuNPs) self-assemblies were examined as peroxidase enzyme–mimic catalysts for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) and its activity was monitored by changing the reaction conditions such as pH, temperature, initial TMB concentration, and catalyst (Au) loading amount. The YC7@AuNPs catalysts were active for TMB oxidation even in the absence of hydrogen peroxide. Michaelis–Menten kinetic analysis showed that the YC7@AuNPs catalysts without hydrogen peroxide have activities comparable to other peroxidase–mimic catalysts using hydrogen peroxide in terms of the Michaelis constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He W, Liu Y, Yuan J, Yin JJ, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4):1139–1147

    Article  CAS  PubMed  Google Scholar 

  2. Lv X, Weng J (2013) Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide. Sci Rep 3:3285–3295

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  4. Halliwella B, Clemente MV, Long LH (2000) Hydrogen peroxide in the human body. FEBS Lett 486:10–13

    Article  Google Scholar 

  5. Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B (2015) Hydrogen peroxide—production, fate and role in redox signaling of tumor cells. Cell Commun Signal 13:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin Y, Li Z, Chen Z, Ren J, Qu X (2013) Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 34(11):2600–2610

    Article  CAS  PubMed  Google Scholar 

  7. Dębski D, Smulik R, Zielonka J, Michałowski B, Jakubowska M, Dębowska K, Adamus J, Marcinek A, Kalyanaraman B, Sikora A (2016) Mechanism of oxidative conversion of Amplex(R) Red to resorufin: pulse radiolysis and enzymatic studies. Free Radic Biol Med 95:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun (Camb) 47(43):11939–11941

    Article  CAS  Google Scholar 

  9. Deng M, Xu S, Chen F (2014) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by BSA-stabilized Au nanoclusters as a peroxidase mimic and its application. Anal Methods 6(9):3117–3123

    Article  CAS  Google Scholar 

  10. Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329

    Article  CAS  PubMed  Google Scholar 

  11. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomar A, Garg G (2013) Short review on application of gold nanoparticles. Global J Pharmacol 7:34–38

    Google Scholar 

  13. Das M, Shim KH, An SS, Yi DK (2012) Review on gold nanoparticles and their applications. Toxicol Environ Health Sci 3(4):193–205

    Article  Google Scholar 

  14. Lee EJ, Choi JH, Um SH, Oh BK (2017) Electrochemical sensor for selective detection of norepinephrine using graphene sheets-gold nanoparticle complex modified electrode. Korean J Chem Eng 34(4):1129–1132

    Article  CAS  Google Scholar 

  15. Christwardana M, Chung Y, Tannia DC, Kwon Y (2018) Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices. Korean J Chem Eng 35(12):2421–2429

    Article  CAS  Google Scholar 

  16. Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb) 46(42):8017–8019

    Article  CAS  Google Scholar 

  17. Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH (2012) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5):1199–1204

    Article  CAS  PubMed  Google Scholar 

  18. Weiss RM (2001) Regulatory mechanisms for receptor protein tyrosine phosphatases. Chem Rev 101:2441–2448

    Article  CAS  PubMed  Google Scholar 

  19. Kálmán L, LoBrutto R, Allen JP, Williams JC (1999) Modified reaction centres oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699

    Article  Google Scholar 

  20. Jang HS, Lee JH, Park YS, Kim YO, Park J, Yang TY, Jin K, Lee J, Park S, You JM, Jeong KW, Shin A, Oh IS, Kwon MK, Kim YI, Cho HH, Han HN, Kim Y, Chang YH, Paik SR, Nam KT, Lee YS (2014) Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 5:3665–3676

    Article  CAS  PubMed  Google Scholar 

  21. Kim YO, Jang HS, Kim YH, You ZM, Park YS, Jin K, Kang O, Nam KT, Kim JW, Lee SM, Lee YS (2015) A tyrosine-rich peptide induced flower-like palladium nanostructure and its catalytic activity. RSC Adv 5(95):78026–78029

    Article  CAS  Google Scholar 

  22. Kim S, Cho HJ, Lee N, Lee YS, Shin DS, Lee SM (2017) A phase-reversible Pd containing sphere-to-bridge-shaped peptide nanostructure for cross-coupling reactions. RSC Adv 7(53):33162–33165

    Article  CAS  Google Scholar 

  23. Lee N, Jang HS, Lee M, Kim YO, Cho HJ, Jeong DH, Shin DS, Lee YS, Lee DW, Lee SM (2018) Au ion-mediated self-assembled tyrosine-rich peptide nanostructure embedded with gold nanoparticle satellites. J Ind Eng Chem 64:461–466

    Article  CAS  Google Scholar 

  24. Lee N, Lee DW, Lee SM (2018) Gold nanoparticle-stabilized, tyrosine-rich peptide self-assemblies and their catalytic activities in the reduction of 4-nitrophenol. Biomacromol 19:4534–4541

    Article  CAS  Google Scholar 

  25. Josephy PD, Elin T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. J Biol Chem 257(7):3669–3675

    CAS  PubMed  Google Scholar 

  26. Gao L, Liu M, Ma G, Wang Y, Zhao L, Yuan Q, Gao F, Liu R, Zhai J, Chai Z, Zhao Y, Gao X (2015) Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano 9(11):10979–10990

    Article  CAS  PubMed  Google Scholar 

  27. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  28. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Cham

    Book  Google Scholar 

  29. Slocik JM, Naik RR, Stone MO, Wright DW (2005) Viral templates for gold nanoparticle synthesis. J Mater Chem 15(7):749–753

    Article  CAS  Google Scholar 

  30. Zhou Y, Chen W, Itoh H, Naka K, Ni Q, Yamane H, Chujo Y (2001) Preparation of a novel core–shell nanostructured gold colloid–silk fibroin bioconjugate by the protein in situ redox technique at room temperature. Chem Commun 23:2518–2519

    Article  CAS  Google Scholar 

  31. Chang Y, Zhang Z, Hao J, Yang W, Tang J (2016) BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sens Actuator B: Chem 232:692–697

    Article  CAS  Google Scholar 

  32. Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, Xia XH, Chen W (2014) Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal Chem 86(21):10955–10960

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Tian X, Su B, Huang Z, Chen X, Oyama M (2014) Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance. Dalton Trans 43(20):7449–7454

    Article  CAS  PubMed  Google Scholar 

  34. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT(MSIT) (NRF-2016R1A5A1009592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Won Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N., Lee, SM. & Lee, DW. High catalytic activity of gold nanoparticle-templated, tyrosine-rich peptide self-assemblies for 3,3′,5,5′-tetramethylbenzidine oxidation in the absence of hydrogen peroxide. Reac Kinet Mech Cat 128, 349–359 (2019). https://doi.org/10.1007/s11144-019-01619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01619-4

Keywords

Navigation