Skip to main content
Log in

Sulfonic acid-functionalized hierarchical SAPO-34 for fructose dehydration to 5-hydroxymethylfurfural

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Sulfonic acid-functionalized hierarchical SAPO-34 (S1-SAPO-34-SO3H) was prepared by post-grafting 3-mercaptopropyltriethoxysilane, and the sulfonic acid group was then oxidized by H2O2. The obtained catalysts were characterized by XRD, SEM, FTIR, TG, nitrogen adsorption, XRF, and acid–base titration. The acidity of the modified SAPO-34 increased, which confirmed the success of grafting. The catalytic properties during the dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) were investigated. The yield of 5-HMF was up to 72%, and a 34% increase was found compared with the case of SAPO-34. The findings were discussed and attributed to the synergistic effects caused by both the acid groups and the mesopores. More basic investigations with regard to the conditions, including the reaction time, temperature, solvent, load and regeneration, are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mesa L, Lopez N, Cara C, Castro E (2016) Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production. Renew Energy 86:270–279

    Article  CAS  Google Scholar 

  2. Peng X, Nges I, Liu J (2016) Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes. Renew Energy 85:12–18

    Article  CAS  Google Scholar 

  3. Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B (2015) Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts. Fuel 139:301–307

    Article  CAS  Google Scholar 

  4. Rao K, Souzanchi S, Yuan Z, Ray M, Xu C (2017) Simple and green route for preparation of tin phosphate catalysts by solid-state grinding for dehydration of glucose to 5-hydroxymethylfurfural (HMF). RSV Adv 7:48501–48511

    Article  CAS  Google Scholar 

  5. Gomes F, Mendes F, Souza M (2017) Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by phosphotungstic acid. Catal Today 279:296–304

    Article  CAS  Google Scholar 

  6. Irantzu S, Yury Y, Gorbanev S, Siva S, Rolf W, Anders R (2013) Catalytic performance of zeolite-supported Vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemcatChem 5:284–293

    Article  CAS  Google Scholar 

  7. Deng J, Liu X, Li C, Jiang Y, Zhu J (2015) Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Adv 5:15930–15939

    Article  CAS  Google Scholar 

  8. Qin Y, Zong M, Lou W, Li N (2016) Biocatalytic upgrading of 5-hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain Chem Eng 4:4050–4054

    Article  CAS  Google Scholar 

  9. Li H, Saravanamurugan S, Yang S, Riisager A (2016) Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chem 18:726–734

    Article  CAS  Google Scholar 

  10. Stephanie G, David M, Elif I, James A (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1:218–224

    Article  CAS  Google Scholar 

  11. Sun X, Wang J, Chen J, Zheng J, Shao H, Huang C (2018) Dehydration of fructose to 5-hydroxymethylfurfural over MeSAPOs synthesized from bauxite. Microporous Mesoporous Mater 259:238–243

    Article  CAS  Google Scholar 

  12. Morales I, Gonzale J, Lopez A, Torres P (2014) Glucose dehydration to 5-hydroxymethylfurfural on zirconium containing mesoporous MCM-41 silica catalysts. Fuel 265:265–271

    Article  CAS  Google Scholar 

  13. Yang F, Li Y, Zhang Q, Sun X, Fan H, Xu N, Li G (2015) Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO42−/MxOy solid superacid catalyst. Carbohyd Polym 131:9–14

    Article  CAS  Google Scholar 

  14. Leshkov Y, Dumesic J (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52:297–303

    Article  CAS  Google Scholar 

  15. Enomoto K, Hosoya T, Miyafuji H (2018) High-yield production of 5-hydroxymethylfurfural from d-fructose, d-glucose, and cellulose by its in situ removal from the reaction system. Cellulose 4:2249–2257

    Article  CAS  Google Scholar 

  16. Gallo J, Alonso M, Mellmer M, Dumestic J (2012) Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem 15:85–91

    Article  Google Scholar 

  17. Jin H, Ansari B, Park S (2015) Sulfonic acid functionalized mesoporous ZSM-5: synthesis, characterization and catalytic activity in acidic catalysis. Catal Today 245:116–121

    Article  CAS  Google Scholar 

  18. Yang F, Liu Q, Bai X, Du Y (2011) Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresour Technol 102:3424–3429

    Article  CAS  PubMed  Google Scholar 

  19. Qi X, Watanable M, Aida T, Smith R (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–805

    Article  CAS  Google Scholar 

  20. Li X, Xia Q, Nguyen V, Peng KH, Liu X, Essayem N, Wang Y (2016) High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catal Sci Technol 6:7586–7597

    Article  CAS  Google Scholar 

  21. Bhaumik P, Dhepe P (2013) Influence of properties of SAPO’s on the one-pot conversion of mono-, di- and poly-saccharides into 5-hydroxymethylfurfural. RSC Adv 3:17156–17165

    Article  CAS  Google Scholar 

  22. Pande A, Niphadkar P, Pandare K, Bokade V (2018) Acid modified H-USY zeolite for efficient catalytic transformation of fructose to 5-HydroxymethylFurfural (Biofuel Precursor) in methyl isobutyl ketone-water biphasic system. Energy Fuels 32:3783–3794

    Article  CAS  Google Scholar 

  23. Rac V, Rakic V, Stosic D, Otman O, Aline A (2014) Hierarchical ZSM-5, Beta and USY zeolites: Acidity assessment by gas and aqueous phase calorimetry and catalytic activity in fructose dehydration reaction. Microporous Mesoporous Mater 194:126–134

    Article  CAS  Google Scholar 

  24. Bhanja P, Modak A, Sauvik C, Asim B (2017) Bifunctionalized mesoporous SBA-15: a new heterogeneous catalyst for the facile synthesis of 5-hydroxymethylfurfural. ACS Sustain Chem Eng 5:2763–2781

    Article  CAS  Google Scholar 

  25. Zhou L, Liu Z, Shi M, Du S, Su Y, Yang X, Xu J (2013) Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose. Carbohyd Polym 98:146–151

    Article  CAS  Google Scholar 

  26. Karimi B, Mirzaei H, Behzadnia H, Vali H (2015) Novel ordered mesoporous carbon based sulfonic acid as an efficient catalyst in the selective dehydration of fructose into 5-HMF: the role of solvent and surface chemistry. ACS App Mater Interfaces 7:19050–19059

    Article  CAS  Google Scholar 

  27. Zhang L, Huang Y (2016) New insights into formation of molecular sieve SAPO-34 for MTO reactions. J Phys Chem 120:25945–25957

    CAS  Google Scholar 

  28. Zhang L, Xi G, Chen Z, Qi Z, Wang X (2017) Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO-34 catalyst. Chem Eng J 307:877–883

    Article  CAS  Google Scholar 

  29. Wang C, Wang J, Shen M, Wang W, Li W (2017) The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34. Appl Catal B-Environ 204:239–249

    Article  CAS  Google Scholar 

  30. Li S, Zong Z, Huang Y, Yu M, Carreon M (2015) SAPO-34 membranes for N2/CH4 separation: preparation, characterization, separation performance and economic evaluation. J Membr Sci 487:141–151

    Article  CAS  Google Scholar 

  31. Yang H, Liu X, Lu G, Wang Y (2016) Synthesis of SAPO-34 nanoplates via hydrothermal method. Microporous Mesoporous Mater 225:144–153

    Article  CAS  Google Scholar 

  32. Liu B, Zhang Z (2015) Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal 6:326–339

    Article  CAS  Google Scholar 

  33. Wang J, Zhu L, Cui H, Zhang Y (2016) Fructose dehydration to 5-HMF over three sulfonated carbons: effect of different pore structures. J Chem Technol Biotechnol 92:1454–1463

    Article  CAS  Google Scholar 

  34. Mbaraka I, Radu D, Lin V, Shanks B (2003) Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J Catal 219:329–336

    Article  CAS  Google Scholar 

  35. Di C, Li X, Wang P, Li Z, Fan B (2017) Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology. Pet Sci 14:203–213

    Article  CAS  Google Scholar 

  36. Ren S, Liu G, Wu X, Chen X, Liu Z, Wu M, Sun Y (2017) Enhanced MTO performance over acid treated hierarchical SAPO-34. Chin J Catal 38:123–130

    Article  CAS  Google Scholar 

  37. Saravanamurugan S, Prasetyanto Sujandi, Park S (2008) Liquid-phase reaction of 20-hydroxyacetophenone and benzaldehyde over SO3H-SBA-15 catalysts: influence of microwave and thermal effects. Microporous Mesoporous Mater 112:97–107

    Article  CAS  Google Scholar 

  38. Shalmani F, Halladj R, Askari S (2017) Physicochemical characterization to assess Ni and Zn incorporation into zeotype SAPO-34 nanoparticles synthesized with different mixing methods through ultrasound-promoted crystallization. RSC Adv 7:26756–26769

    Article  Google Scholar 

  39. Yang X, Wei Y, Su Y, Zhou L (2010) Characterization of fused Fe–Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR. Fuel Process Technol 91:1168–1173

    Article  CAS  Google Scholar 

  40. Yang Z, Qi W, Huang R, Fang J, Su R, He Z (2016) Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural. Chem Eng J 296:209–216

    Article  CAS  Google Scholar 

  41. Wang L, Zhang L, Li H (2019) High selective production of 5-hydroxymethylfurfural from fructose by sulfonic acid functionalized SBA-15 catalyst. Compos B 156:88–94

    Article  CAS  Google Scholar 

  42. Wang C, Yang M, Zhang W, Liu Z (2016) Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance. RSC Adv 6:47864–47872

    Article  CAS  Google Scholar 

  43. Solis Maldonado C, Javier RDLR, Lucio-Ortiz CJ (2016) Synthesis and characterization of functionalized alumina catalysts with thiol and sulfonic groups and their performance in producing 5-hydroxymethylfurfural from fructose. Fuel 198:134–144

    Article  CAS  Google Scholar 

  44. Wang K, Zhang YL, Li CX, Yan YS (2018) Facile synthesis of hierarchical porous solid catalysts with acid–base bifunctional active sites for the conversion of cellulose to 5-hydroxymethylfurfural. New J Chem 42:18084–18095

    Article  CAS  Google Scholar 

  45. Gan LH, Shen TR, Wang S (2019) Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural. Appl Catal A 25:132–143

    Article  CAS  Google Scholar 

  46. Girisuta B, Dussan K, Haverty K, Leahy J, Hayes M (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70

    Article  CAS  Google Scholar 

  47. Shao H, Chen J, Zhao J, Wang J (2015) Development of MeSAPO-5 molecular sieves from attapulgite for dehydration of carbohydrates. Ind Eng Chem Res 54:1470–1477

    Article  CAS  Google Scholar 

  48. Hafizi H, Chermahini A, Saraji M (2016) The catalytic conversion of fructose into HMF over acid-functionalized KIT-6, an ordered mesoporous silica. Che Eng J 294:380–388

    Article  CAS  Google Scholar 

  49. Cao Z, Li M, Chen Y (2018) Dehydration of fructose into 5-hydroxymethylfurfural in a biphasic system using edta as a temperature-responsive catalyst. Appl Catal A 569:93–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We make a great acknowledgment for the financial support of this work by National Science and Technology of China (No. 2013BAE11B03) and Prospective Joint Research Project of Industry, University and Research in Jiangsu Province (No. BY2016005-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Sun, Z., Qin, D. et al. Sulfonic acid-functionalized hierarchical SAPO-34 for fructose dehydration to 5-hydroxymethylfurfural. Reac Kinet Mech Cat 128, 523–538 (2019). https://doi.org/10.1007/s11144-019-01603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01603-y

Keywords

Navigation