Skip to main content
Log in

Optimal Motion Law of a Resonant Nuclear Absorber for the Formation of Short Pulses of Mössbauer Radiation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In this paper, the method of transforming the Mössbauer gamma radiation into a train of ultrashort pulses in a resonant nuclear absorber, which harmonically oscillates as a whole along the direction of radiation propagation [1], was generalized to the case of multifrequency absorber oscillations. Based on the example of the Mössbauer absorber 57Fe and the radioactive Mössbauer source of 14.4 keV photons 57Co, it is shown that under optimal conditions, adding new harmonics of the fundamental frequency to the law of absorber motion makes it possible to reduce the duration and increase the intensity of the generated pulses while maintaining their repetition period. An optimal law of absorber motion leading to the formation of the shortest and most intense pulses is derived. It corresponds to periodic fast displacements of the absorber relative to the source by the wavelength of resonant radiation. In this case, the duration of each individual pulse of the output radiation is determined by the duration of the constructive interference that appears and disappears with a rapid change in the relative phase between the incident field and the field coherently forward-scattered by the nuclei of the moving absorber due to the Doppler effect. The possibility of transforming quasi-monochromatic radiation into a single intense short pulse, the duration and instant of the formation of which are determined by the duration and instant of the onset of the absorber displacement, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.Vagizov, V. Antonov, Y. V. Radeonychev, et al., Nature, 508, 80–83 (2014). https://doi.org/10.1038/nature13018

    Article  ADS  Google Scholar 

  2. F.Döring, A. L.Robisch, C. Eberl, et al., Opt. Express, 21, No. 16, 19311–19323 (2013). https://doi.org/10.1364/OE.21.019311

    Article  ADS  Google Scholar 

  3. S. Shwartz, R.N.Coffee, J. M. Feldkamp, et al., Phys. Rev. Lett., 109, 013602 (2012). https://doi.org/10.1103/PhysRevLett.109.013602

  4. R.Röhlsberger, H.-C.Wille, K. Schlage, and B. Sahoo, Nature, 482, 199–203 (2012). https://doi.org/10.1038/nature10741

    Article  ADS  Google Scholar 

  5. R.Röhlsberger, K. Schlage, B. Sahoo, et al., Science, 328, 1248–1251 (2010). https://doi.org/10.1126/science.1187770

    Article  ADS  Google Scholar 

  6. K.P. Heeg, H.-C. Wille, K. Schlage, et al., Phys. Rev. Lett., 111, 073601 (2013). https://doi.org/10.1103/PhysRevLett.111.073601

  7. Y. V.Radeonychev, I.R. Khairulin, F.G.Vagizov, et al., Phys. Rev. Lett., 124, 163602 (2020). https://doi.org/10.1103/PhysRevLett.124.163602

  8. K.P. Heeg, C.Ott, D. Schumacher, et al., Phys. Rev. Lett., 114, 207401 (2015). https://doi.org/10.1103/PhysRevLett.114.207401

  9. K.P. Heeg, J.Haber, D. Schumacher, et al., Phys. Rev. Lett., 114, 203601 (2015). https://doi.org/10.1103/PhysRevLett.114.203601

  10. J.Haber, K. S. Schulze, K. Schlage, et al., Nature Photon., 10, 445–449 (2016). https://doi.org/10.1038/nphoton.2016.77

    Article  ADS  Google Scholar 

  11. R. N. Shakhmuratov, F. G.Vagizov, V. A. Antonov, et al., Phys. Rev. A, 92, 023836 (2015). https://doi.org/10.1103/PhysRevA.92.023836

  12. V. A. Antonov, Y. V. Radeonychev, and O.Kocharovskaya, Phys. Rev. A, 92, 023841 (2015). https://doi.org/10.1103/PhysRevA.92.023841

  13. I.R. Khairulin, V.A.Antonov, Y.V.Radeonychev, and O.Kocharovskaya, Phys. Rev. A, 98, 043860 (2018). https://doi.org/10.1103/PhysRevA.98.043860

  14. Y. V. Radeonychev, V. A. Antonov, F. G.Vagizov, et al., Phys. Rev. A, 92, 043808 (2015). https://doi.org/10.1103/PhysRevA.92.043808

  15. F. J. Lynch, R. E.Holland, and M.Hamermesh, Phys. Rev., 120, 513 (1960). https://doi.org/10.1103/PhysRev.120.513

    Article  ADS  Google Scholar 

  16. I.R. Khairulin, V.A.Antonov, Y.V.Radeonychev, and O. A.Kocharovskaya, J. Phys. B: At. Mol. Opt. Phys., 51, 235601 (2018). https://doi.org/10.1088/1361-6455/aaeb84

  17. R. N. Shakhmuratov, Phys. Rev. A, 100, 043823 (2019). 0.1103/PhysRevA.100.043823

  18. E. Ikonen, P.Helist¨o, T.Katila, and K.Riski, Phys. Rev. A, 32, 2298 (1985). https://doi.org/10.1103/PhysRevA.32.2298

  19. X. Zhang, W.-T. Liao, A. Kalachev, et al., Phys. Rev. Lett., 123, 250504 (2019). https://doi.org/10.1103/PhysRevLett.123.250504

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Khairulin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 4, pp. 269–286, April 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_04_269

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairulin, I.R., Radeonychev, Y.V., Antonov, V.A. et al. Optimal Motion Law of a Resonant Nuclear Absorber for the Formation of Short Pulses of Mössbauer Radiation. Radiophys Quantum El 65, 247–262 (2022). https://doi.org/10.1007/s11141-023-10209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10209-3

Navigation