Skip to main content
Log in

Dynamics of a Recurrent Spiking Neural Network in the Two-Alternative Choice Task

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We have revealed the dynamic mechanism of solving a cognitive task of two-alternative choice by an artificial recurrent network of spiking neurons. The approach to designing a functional network model is described based on machine learning methods. The formation of a modular coupling structure during training is established. The properties of the network response, which underlie the performing of a target task, are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A.Richards, T.P. Lillicrap, P. Beaudoin, et al., Nature Neurosci ., 22, No. 11, 1761–1770 (2019). https://doi.org/10.1038/s41593-019-0520-2

  2. A. H. Marblestone, G.Wayne, and K.P.Kording, Front. Comput. Neurosci ., 10, 94 (2016). https://doi.org/10.3389/fncom.2016.00094

    Article  Google Scholar 

  3. J. Schmidhuber, Neural Networks, 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  4. Y. LeCun, Y. Bengio, and G.Hinton, Nature, 521, No. 7553, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  ADS  Google Scholar 

  5. S.Vyas, M.D.Golub, D. Sussillo, and K. V. Shenoy, Annu. Rev. Neurosci ., 43, 249–275 (2020). https://doi.org/10.1146/annurev-neuro-092619-094115

  6. M. I.Rabinovich, V. S.Afraimovich, C.Bick, and P.Varona, Phys. Life Rev., 9, No. 1, 51–73 (2012). https://doi.org/10.1016/j.plrev.2011.11.002

    Article  ADS  Google Scholar 

  7. M. I.Rabinovich, K. J. Friston, and P.Varona, eds., in: Principles of Brain Dynamics: Global State Interactions, MIT Press, Cambridge, MA (2012).

    Google Scholar 

  8. O. Barak, Curr. Opin. Neurobiol., 46, 1–6 (2017). https://doi.org/10.1016/j.conb.2017.06.003

    Article  Google Scholar 

  9. D. Sussillo, Curr. Opin. Neurobiol., 25, 156–163 (2014). https://doi.org/10.1016/j.conb.2014.01.008

    Article  Google Scholar 

  10. O. V. Maslennikov and V. I. Nekorkin, Nonlin. Dyn., 101, No. 2, 1093–1103 (2020). https://doi.org/10.1007/s11071-020-05787-0

    Article  Google Scholar 

  11. O. V. Maslennikov and V. I. Nekorkin, Chaos, 29, No. 10, 103126 (2019). https://doi.org/10.1063/1.5119895

    Article  ADS  MathSciNet  Google Scholar 

  12. G.R.Yang and X.-J.Wang, Neuron, 107, No. 6, 1048–1070 (2020). https://doi.org/10.1016/j.neuron.2020.09.005

    Article  MathSciNet  Google Scholar 

  13. G.R.Yang, M.R. Joglekar, H. F. Song, et al., Nature Neurosci ., 22, No. 2, 297–306 (2019). https://doi.org/10.1038/s41593-018-0310-2

  14. W. Chaisangmongkon, S. K. Swaminathan, D. J. Freedman, and X.-J.Wang, Neuron, 93, No. 6, 1504–1517 (2017). https://doi.org/10.1016/j.neuron.2017.03.002

    Article  Google Scholar 

  15. V. Mante, D. Sussillo, K.V. Shenoy, and W.T.Newsome, Nature, 503, No. 7474, 78–84 (2013). https://doi.org/10.1038/nature12742

    Article  ADS  Google Scholar 

  16. S. M. Bohte, J. N.Kok, and J.A. La Poutré, in: 8th European Symp. on Artificial Neural Networks, April 26–28, 2000, Bruges, pp. 419–424.

  17. D. Sussillo and L. F.Abbott, Neuron, 63, No. 4, 544–557 (2009). https://doi.org/10.1016/j.neuron.2009.07.018

    Article  Google Scholar 

  18. W. Nicola and C.Clopath, Nature Commun., 8, No. 1, 2208 (2017). https://doi.org/10.1038/s41467-017-01827-3

    Article  ADS  Google Scholar 

  19. H. F. Song, G.R.Yang, and X.-J.Wang, eLife, 6, e21492 (2017). https://doi.org/10.7554/eLife.21492

  20. V. Demin and D. Nekhaev, Front. Neuroinform., 12, 79 (2018). https://doi.org/10.3389/fninf.2018.00079

    Article  Google Scholar 

  21. M. M. Pugavko, O. V. Maslennikov, and V. I.Nekorkin, Commun. Nonlin. Sci. Numer. Simul., 90, 105399 (2020). https://doi.org/10.1016/j.cnsns.2020.105399

    Article  Google Scholar 

  22. M. M. Pugavko, O. V. Maslennikov, and V. I.Nekorkin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 28, No. 1, 77–89 (2020). 10.18500/0869-6632-2020-28-1-77-89

  23. G. Bellec, F. Scherr, A. Subramoney, et al., Nature Commun., 11, No. 1, 3625 (2020). https://doi.org/10.1038/s41467-020-17236-y

    Article  ADS  Google Scholar 

  24. M. Davies, N. Srinivasa, T.-H. Lin, et al., IEEE Micro, 38, No. 1, 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359

    Article  Google Scholar 

  25. O.V. Maslennikov, M. M. Pugavko, D. S. Shchapin, and V. I.Nekorkin, Phys. Usp. [in press]. https://doi.org/10.3367/UFNr.2021.08.039042

  26. K.H. Britten, M.N. Shadlen, W.T.Newsome, and J.A.Movshon, J. Neurosci ., 12, No. 12, 4745–4765 (1992). https://doi.org/10.1523/JNEUROSCI.12-12-04745.1992

  27. J. I. Gold and M.N. Shadlen, Annu. Rev. Neurosci ., 30, 535–574 (2007). https://doi.org/10.1146/annurev.neuro.29.051605.113038

  28. X.-J.Wang, Curr. Opin. Neurobiol., 22, No. 6, 1039–1046 (2012). https://doi.org/10.1016/j.conb.2012.08.006

    Article  Google Scholar 

  29. X.-J.Wang, Neuron, 60, No. 2, 215–234 (2018). https://doi.org/10.1016/j.neuron.2008.09.034

    Article  Google Scholar 

  30. C. D. Brody and T. D.Hanks, Curr. Opin. Neurobiol., 37, 149–157 (2016). https://doi.org/10.1016/j.conb.2016.01.003

    Article  Google Scholar 

  31. T. D.Hanks and C. Summerfield, Neuron, 93, No. 1, 15–31 (2017). https://doi.org/10.1016/j.neuron.2016.12.003

    Article  Google Scholar 

  32. K. W. Latimer, J. L.Yates, M. L.R. Meister, et al., Science, 349, No. 6244, 184–187 (2015). https://doi.org/10.1126/science.aaa4056

    Article  ADS  Google Scholar 

  33. J. Ditterich, Neural Networks, 19, No. 8, 981–1012 (2006). https://doi.org/10.1016/j.neunet.2006.05.042

    Article  Google Scholar 

  34. A. Bollimunta, D.Totten, and J.Ditterich, J. Neurosci ., 32, No. 37, 12684–12701 (2012). https://doi.org/10.1523/JNEUROSCI.5752-11.2012

  35. D. M. Zoltowski, K. W. Latimer, J. L.Yates, et al., Neuron, 102, No. 6, 1249–1258 (2019). https://doi.org/10.1016/j.neuron.2019.04.031

    Article  Google Scholar 

  36. G. N. Borisyuk, R.M.Borisyuk, and Ya. B. Kazanovich, Radiophys. Quantum Electron., 37, No. 8, 607–614 (1994). https://doi.org/10.1007/BF01038264.

    Article  ADS  Google Scholar 

  37. R. M. Borisyuk and Ya. B. Kazanovich, Neural Networks, 17, No. 7, 899–915 (2004). https://doi.org/10.1016/j.neunet.2004.03.005

    Article  Google Scholar 

  38. G.N.Borisyuk, R.M. Borisyuk, Ya. B.Kazanovich, and G.R. Ivanitskii, Phys. Usp., 45, No. 10, 1073–1095 (2002). https://doi.org/10.1070/PU2002v045n10ABEH001143

    Article  ADS  Google Scholar 

  39. L. Lapicque, J. Physiol. Pathol. Générale, 9, 620–635 (1907).

    Google Scholar 

  40. A.Tavanaei, M.Ghodrati, S.R. Kheradpisheh, et al., Neural Networks, 111, 47–63 (2019). https://doi.org/10.1016/j.neunet.2018.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.V. Maslennikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 10, pp. 817–832, October 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_10_817

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugavko, M.M., Maslennikov, O. & Nekorkin, V.I. Dynamics of a Recurrent Spiking Neural Network in the Two-Alternative Choice Task. Radiophys Quantum El 64, 736–749 (2022). https://doi.org/10.1007/s11141-022-10175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10175-2

Navigation